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Abstract—In the past decade, the revolutionary Artificial
Neural Networks (ANNs) has won many accolades for improving
the benchmark predictive accuracies in a variety of data-oriented
problems in different domains. Rainfall-Runoff (RR) modelling
process of a catchment (or watershed) is one such problem in
Hydrology. Despite achieving better prediction accuracy com-
pared to traditional modeling techniques, ANNs suffer from
its lack of reliability in real-world applications. Usually, the
reliability index of any predictive model is directly proportional
to its comprehensibility score. ANNs’ fundamental problem lies
in their trained but random weights values which are difficult
to physically comprehend or interpret. This study is aimed to
prove the hypotheses if mathematically trained ANN models can
explain the physical conceptual concepts inherent in the rainfall-
runoff process i.e., whether there is a possibility of hidden neuron
specialization or not. This has been achieved by employing
qualitative and quantitative knowledge extraction techniques on
the best ANN models developed for the data derived from three
catchments, Kentucky River, Alsea River, and Bird Creek, at
two different time scales. The results generated from this study
support the preliminary hypotheses and also open a well-directed
approach to knowledge extraction from trained ANN models.
.
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I. INTRODUCTION

Rainfall-Runoff (RR) is a hydrologic process which can
be arguably considered as one of the most researched topics
in the field of hydrological processes modeling. Till now,
different methodologies have been applied in an attempt to
constantly model this highly complex and implicit but yet
deterministic chaotic system [1]. Many researchers and en-
gineers have tried both physical (conceptual) and mathemat-
ical modeling on RR process with both having advantages
and disadvantages of their own. Modeling of this non-linear,
dynamic (time-variant), and continuous process continually
becomes a topic of research in the scientific community as
soon as new modeling methodologies immerse. The objective
of designing better hydraulic systems like culverts, dams, et
al. heavily depends on a very accurate estimation of runoff
in the surrounding catchments. Two of the most popularly
applied modeling techniques to estimate runoff are physical
modeling and mathematical modeling. In physical modeling,
an output is directly estimated from analogs or theoretical
simulations using the conceptual theory of the RR processes

while mathematical modeling, with the help of various mathe-
matical concepts, manipulates the interrelation (linear or non-
linear) of dependent and independent variables to approximate
the process’ underlying complex function. Past studies show
that each modeling process has been continuously scrutinized
and analyzed thoroughly with a hope of an increase in their
reliability and interpretability for the sensitive, costly and real-
time risk-averse hydraulic systems.

Rainfall-runoff modeling, a non-linear process, estimates
runoff or streamflow for any stream, river or catchment with
the use of its inherent sub-processes as shown in the figure
1a. However, the relationship between rainfall and runoff is
the most important. This is mainly due to the fact that rainfall
data is the most influential factor in flow forecasting. And,
good forecasting methods can only be developed with the
most appropriate relationship between different factors of the
underlying physical system which, in this case, are rainfall and
runoff. Moreover, rainfall data has been abundantly (and more
accurately) collected by governments, organizations, academic
institutions, et al. in the past few decades or so, this availability
can be efficiently as well as effectively used to fill the in-
between missing values of already collected runoff records,
or in extending them. Hence, for modeling purposes, the
relationship between the two is extremely useful.

However, the physical process involved in RR modelling
comprises an arguable level of uncertainty (because of its
chaotic nature i.e., interdependency on a large number of vari-
ables including rainfall makes RR modelling more complex)
due to which existing modelling techniques and results are
often questioned on their reliability and hence, needed to be
improved for gaining our utmost trust. This uncertainty can
be attributed to the continuous human developments and the
changes they bring to the hydrologic RR process. To mitigate
this uncertainty as well as improve the accuracy of modeling
results, researchers always play around with new theories and
modeling research. One such theory is Neural Networks, a
concept designed to imitate the functioning of the human
brain. The cardinal concept was originally developed by War-
ren McCulloch and Walter Pitts during 1943 [2]. They created
a simple computation model for processing large streams of
data and extracting the useful insights hidden in them. The soft
computing methodology, Neural networks, combine different
theories from computer science, mathematics, and cognitive
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science and is one of the most popular predictive modeling
technique of this past decade with applications in fields of both
social and natural sciences. The framework of Neural network
RR modeling is illustrated in the figure 1b. The input parame-
ters (rainfall) are feed to a black-box model or algorithm which
estimates the regression function between the output (runoff)
and previously fed inputs (rainfall). The main advantage of
Neural networks over other conventional modeling methods is
its ability to easily as well as competently map the non-linear
processes without even inheriting the fundamental concepts
of the system being modeled. Hence, it is only reasonable to
explore the application of this revolutionary technique on the
rainfall-runoff modeling.

Fig. 1: Rainfall-Runoff Process and its ANN Model

As of now, despite ANN’s considerable benefits in RR mod-
eling, the use of ANN models in the hydrologic application
is still very much limited to the laboratories. The above-
mentioned advantage of the ANNs is surprisingly one of its
major drawbacks too. Being a data-driven technique, ANN
doesn’t concern with the ingrained details of the modeled
process due to which the inherent knowledge an ANN model
applies to generate a particular output is fundamentally non-
interpretable. This bottleneck is still persistent in the real-
world deployment of ANN RR Models and is a subject of
current hydrological research.

Identifying or revealing the physics embedded in an ANN
model is popularly called as Knowledge Extraction from
trained ANNs. A plethora of research has already been con-
ducted in this area and its initial success is enough of the
reasons for more rigorous studies. Different methods, i.e,
Sensitivity Analysis and Correlation Analysis, are already
available to analyze a trained ANN model for interpreting
the physics embedded inside them (However, there are also
other methods outside the present author’s limited knowledge
and should be explored as per requirements). In Sensitivity

Analysis of ANN models, there is an attempt to find the
potential changes in the output relative to the changes in the
inputs or interlinked weights of the network. But, being a
multi-solution method, ANNs have different values of weights
which can possibly result in nearly same outputs and that
makes Sensitivity Analysis slightly non-effective as a Knowl-
edge Extraction technique. The other method, Correlation
Analysis, along with a complementary Graphical Method, is
used to achieve this paper’s primary objective of examining a
possibility of inheritance of the modeled physical processes’
conceptual components in a trained ANN model for the
rainfall-runoff process. Details of the methods are illustrated
in section IV.

The primary objective of this paper to explore the inherent
physical significance of trained ANN RR models can only
be achieved after the development of the models. So, the
objective is systematically divided into two parts which are
Model Development (section III) and Knowledge Extraction
(section IV). ANN models are prepared with a necessary
exploitation of their cardinal architectural freedom. The pro-
cess of development is briefly described in section III while
the examination of these developed models for the physical
significance is evaluated in section IV. The current paper also
presents a comparative analytical study of different spatial
locations’ ANN RR models conducted to explore a general-
ization capability or the reserved nature of both modeling and
knowledge extraction aspects. The three catchments used are
Kentucky River, Alsea River, and Bird-Creek River the details
of which are presented in section III.

II. LITERATURE REVIEW

A. Rainfall-Runoff Artificial Neural Network Models

Rainfall-Runoff modeling in hydrology has been a topic
of interest among its researchers since the late 19th century
(Todini, 1988). One of the main reasons to model hydrol-
ogy’s rainfall-runoff process is the limitation of hydrological
measurement techniques in calculating the desired hydro-
logical parameters of different space and time [3]. Since
RR modeling can be easily and purely carried out on an
analytical framework i.e., estimation or extrapolation of output
parameters like runoff from its input parameters like rainfall
for a catchment without any reference to the involved internal
processes. And, Artificial Neural Networks (ANNs) satisfies
all the above-mentioned criteria and have been constantly
considered a robust tool for modeling the non-linear rainfall-
runoff hydrological process [4].

The earliest study for developing a rainfall-runoff neural
network model was performed in the early 1990s. The appli-
cation of ANNs in RR modeling started with a preliminary
study by Halff et al. (1993) who used a three layer feed-
forward ANN for the prediction of hydrographs. Since then,
Karunanithi et al. (1994), Hsu et al. (1995), Smith & Eli
(1995), Minns & Hall (1996), Sajikumar et al. (1999), Ehrman
et al. (2000), Birikundavyi et al. (2002), Jain & Indurthy
(2003), Jain & Kumar (2007), Narain & Jain (2010), and
others have developed and studied ANN RR models using
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the collected data from real catchments [5]. All these suc-
cessful studies clearly demonstrate that ANN is a powerful
tool to forecast runoff in catchments which is, otherwise,
quite difficult for restrained conceptual models largely because
of rainfall-runoff process’ non-linear and non-deterministic
nature.

In an ANN model, pre-defined and relevant input parameters
have to be manually selected by the researchers or modelers. In
that context, Sudheer et al. (2002) utilized statistical properties
like auto-, cross-, and partial auto-correlation to determine an
optimum number of input variables to feed in an ANN model
which was also used for the development of this study’s ANN
RR models [6].

Currently, various neural networks’ variants are being used
to constantly improve on still-limitations of the earlier ones.
The most popular and successful ANN which has been used
to model RR process is Multi-Layer feed-forward BackProp-
agation Artificial Neural Networks (ML-BPANN) explanation
of which is given in section IIIA. Agarwal and Singh (2003)
developed ML-BPANN models to simulate RR process for
two sub-basins of Narmada River, India. The BPANN models
were developed using gradient descent optimization algorithm
and generalized through cross-validation [7]. Other variants
of ANNs suitable for modeling the temporal data of rainfall-
runoff are Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTMs), et al. These methods are relatively
new in rainfall-runoff modeling and are currently a part of
ongoing research. This study, however, concerns only with
ML-BPANN with an objective of determining best possible
models for three different catchments. Different model pa-
rameters and functionalities of ML-BPANN i.e., architecture
(number of hidden layers’ neurons), features, etc. are exploited
to achieve this objective (more on this in section III). Most of
the above-mentioned studies founded that single hidden layer
ANNs are very effective in RR modeling. Therefore, our study
limits only to the single layer BPANN models.

B. Knowledge Extraction from Trained ANN Models

In spite of a considerable improvement in ANNs’ accuracy
as well as generalization capability in runoff-estimation, there
is a stigma associated with their use in real-world applications.
They are still underrated mostly because of their inexplicable
nature of learning (Arbatli and Akin, 1977) [8]. One approach
to shed some light on this limitation is to extract symbolic rules
from trained ANNs which can best describe how it predicts a
certain output. Following on the decoding of ANNs’ “black-
box” nature [9], Taha and Ghosh (1999) presented three rule-
extraction techniques [10]. Possibly deriving the concept from
Expert-Systems, the first technique attempts to extract a set
of binary rules from any kind of ANN. The other two are
specific to feed-forward networks, with a single hidden-layer
of sigmoidal activation functions. The second technique, called
partial rule extraction method, extracts partial rules explaining
the network’s adjusted but important embedded knowledge,
while the third technique, full rule-extraction method, provides
a more comprehensive and universal approach. Contrary to

that, this study adopts qualitative (Graphical Method) and
quantitative (Correlation Analysis) methods which are more
suitable for the function approximation, modeling, or fore-
casting application of ANNs like rainfall-runoff modeling.

Decision Trees (DTs) algorithm, one of the most widely
proclaimed decision analysis tool used for “white-box” mod-
els, was used to extract decision-based rules from a trained
ANN which were further employed to the interpolated data
generated from training sample by Schmitz et al. (1997) [11].
Setiono et al. (2002) described another knowledge-extraction
approach of using regression in the extraction of decision-
based rules by dividing the input space into sub-regions and
the data corresponding to those sub-regions was approximated
by a linear function involving the relevant input parameters of
the RR process [12].

Castro et al. (2002) interpreted trained RR ANN model in
terms of fuzzy rules. The paper also studied the extraction of
knowledge from two or more hidden layer ANNs [13]. Saad
and Wunsch (2007) developed a pedagogical knowledge ex-
traction algorithm, HYPINV, which reverses the conventional
network flow with the calculation of inputs from the output
(i.e., rainfall from runoff). HYPINV extracts rules in the form
of hyperplanes [14].

Studies specific to knowledge extraction in hydrological
processes includes Wilby et al. (2003) who demonstrated
that architectural features like hidden neuron outputs can
be interpreted by conducting correlation analysis of those
features with state variables and internal fluxes (including soil
moisture, evaporation, base flow, surface flow and perlocation)
of a conceptual RR model [15]. It suggested that different
hidden neurons of hidden layers correlate with distinct and
dominant components of RR process like the base flow and
surface flow. Following on the same thought-process, Jain et
al. (2004) successfully investigated ANN river flow model
for a possible relationship between its hidden layer neurons’
responses and its input variables as well as deterministic
components of the RR process obtained from a conceptual
RR model [16].

Another novel study in order to visualize and interpret
the black-box ANN RR models, Sudheer and Jain (2004),
hypothesized a technique of mathematically mapping flow
duration curve with the trained ANN model’s approximated
function followed by its significant implementation through a
case study [17]. Sudheer (2005) analyzed a river flow model
of Narmada Basin, India through a perturbation analysis tech-
nique to objectively establish a hidden relationship between
dependent output variable and input vectors’ elements [18].
The results showed that each component of input vector at
different antecedent time steps influences the hydrograph’s
shape in different ways.

From all of the above studies, there is a clear message that
more work on knowledge extraction from trained ANNs in
hydrology needs to be done in order to make the ANN RR
models employable and simultaneously bring improvement in
hydraulic systems. In that regard, the present study investi-
gates trained ANN RR models, developed for three different
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catchments, with graphical and correlation analysis of partial
network outputs and hidden neuron responses with conceptual
components (surface and base flows) of the RR process.

III. MODEL DEVELOPMENT

A. Study Area and Statistics
The data used to develop the ANN models was derived

from three different watersheds of the USA at two different
time scales. The three watersheds are Kentucky River Basin,
Kentucky; Alsea River Basin, Oregon; and Bird Creek River
Basin, Oklahoma. The basic statistics of the data (minimum,
maximum, mean, and standard deviation) are shown in Table
I.

For Kentucky River Basin, the data includes average daily
streamflow (m3/s) at Lock and Dam 10 (LD10) near Winch-
ester, Kentucky. With an approximate drainage area of 10,240
Km2, daily total rainfall (mm) data of five gauges at or
near Manchester, Hayden, Jackson, Heidelberg, and Lexington
Airport was taken. The data time length considered was 26
years which was further divided into two parts: training set
consisting daily rainfall and runoff values from 1960 to 1972
and testing dataset from 1977 to 1989.

The data utilized for Alsea River Basin near Tidewater,
Oregon, the USA with a drainage area of 885 km2 comprised
of daily streamflow (m3/s) at station number 14306500 which
is located on the right bank, 1.4 km downstream from Grass
Creek, 0.4 km upstream from Scott Creek, and 6 km southeast
of Tidewater. For this basin, runoff was the only input variable.
The data was divided into 50% for both training and testing.

The catchment of Bird Creek basin, Oklahoma, USA is
located near the northern state border which is also alongside
Kansas and has a drainage area of 2344 km2 with its outlet
near Sperry, about 10 km north of Tulsa city. The data sampled
at 6-hour intervals contains flow (m3/s) and rainfall (mm) with
the training set covering a period from 11 November 1972 to
17 April 1974 while the testing set comprising the 18 April
1974 to 30 December 1974 data.

TABLE I Statistical Properties of Three Catchments’ Data

Statistics
Flow (m3/s) Rainfall (mm)

Training Testing Training Testing

Kentucky

Minimum 1.932 1.274 0.000 0.000
Maximum 2449.217 2432.425 85.751 101.092

Mean 102.734 100.932 3.217 3.249
Standard Deviation 171.025 168.371 6.696 6.734

Alsea

Minimum 1.560 1.980 - -
Maximum 373.240 434.000 - -

Mean 30.500 37.490 - -
Standard Deviation 43.370 55.580 - -

Bird Creek

Minimum 0.340 0.280 0.000 0.000
Maximum 1290.480 1505.560 43.500 74.500

Mean 36.440 48.510 0.810 1.120
Standard Deviation 95.140 133.560 3.340 4.740

B. ANN Model Development

1) Artificial Neural Network (ANN): [19]An artificial neu-
ral network (ANN) is a modelling technique developed to
mimic a ”brain-like” system of interconnected processing units
(called neurons), first proposed by McCulloch and Pitts in
1943 [3], that learn patterns from available historical data
(containing input and output variables) and predicts output
for new input observations. They have vast applications for
different purposes in different fields, but are hugely appraised
& popular for forecasting, and classification problems. In
figure 2, an illustration of a simple three-layer feed-forward
ANN is given. As can be seen, an input layer with multiple
neurons that depict each of different input variables feeds
information (input variables data) to the middle layer and
middle layer processes the information to further direct it to an
output layer which finally produces the desired outputs in the
output layer. Now, input or any other layer does not directly
feed raw data to the next layer neurons. Each layer neuron is
connected to the next layer’s neurons with their connections
representing a number which signifies their weights (w11, et
al.) and this weight is needed to be multiplied by the incoming
input response before proceeding to any of the next layer
neurons. Initially, the weights are random numbers but later
learned over epochs during training. Most of the research on
ANNs justifies that the initialization of weights should be done
in such a way that the summation of all weights should be
exactly 1. This heuristic makes ANN unbiased towards every
input during training.

Fig. 2: Structure of a 3-layer feed-forward ANN Model

Middle & output layers, similar to the input layer, can also
have one or more neurons depending upon the process. For
RR modeling, only output variable is runoff. Similar to the
input layer, each middle layer neuron is also characterized by
a weight (wh1O, wh2O, et al.) mapped to output layer neurons.
These weights are also initialized similar to input layer neurons
and are finally learned as training epochs end. Another model
parameter biases (bi1, bi2,. . . .,bhO which are similar to weights
and also learned during training) are multiplied by 1 and added
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TABLE II Identified Input Variables Using Auto- & Cross-Correlation Analysis

Input Variables Basins

Kentucky(daily) Alsea(daily) Bird Creek(hourly)

Precipitation, P (mm) P(t), P(t-1), & P(t-2) - P(t-36), P(t-42), & P(t-48)
Flow, Q (m3/s) Q(t-1), Q(t-2), & Q(t-3) Q(t-1), Q(t-2), Q(t-3), Q(t-4), & Q(t-5) Q(t-6), Q(t-12), Q(t-18), & Q(t-24)

Total 6 5 7

into weighted inputs’ summation. This summation is then fed
to their next respective layer neurons before activation function
is triggered. One bias neuron is provided in both input and
middle layers (but not output layer) and taken as 1. Unlike
input layer neurons, other layer neurons consist of activation
functions (to be discussed later) which process the summation
of all weighted inputs from input neurons and bound them.
Usually, the activation function is deployed in middle layers
of a network and used to bind the incoming value in order to
make the processing of ANN fast and efficient. The outgoing
activated values from middle layer neurons are again weighted,
summed, forwarded to output layer neurons which may or may
not apply activation function to finally produce the output.

A very popular ANN framework, Multi-Layer feed forward
BackPropagation Artificial Neural Network (ML-BPANN)
with one or more layers between input and output layer is very
widely used for supervised learning of non-linear processes.
ML-BPANN uses the very famous backpropagation algorithm
for training or learning [20]. For RR modeling, it has been
found out that one hidden layer ANNs are sufficient for good
results as well as quick deployment & interpretability [21]. It
can be easily seen that more hidden layers would result in more
processing time and model interpretability loss. To understand
the drawbacks of more hidden layers or complexity, one can
refer to the theory of trade-off between variance and bias of
statistical models.

For this study, ANN models having one hidden layer and
an output layer with multiple and one neuron respectively
were developed. Non-linear activation function, Sigmoid [y =
1/(1 + e−x)] was equipped in middle layer neurons with a
linear activation function in output layer neuron. The linear
activation function is a linear regression line [y = x] which
gives output same as the input. From this, we can infer that
output (rainfall) is a linear combination of inputs from hidden
layer neurons with weights as parameters which will be useful
for knowledge extraction part of the study.

Although there are various heuristics available to decide on
a number of neurons in hidden layers to find the best model
(means architecture), a trail and error method was used. ANN
models with the number of hidden layer neurons varying from
1 to 14 were compared on performance using different evalu-
ation metrics (to be described later). Since sigmoid functions
have deeper descent (larger gradient values) at minimum input
values, therefore, the input data was normalized between 0.1
and 0.9 for faster convergence to the desired optimum solution.
For training, learning-constant of 0.005 and momentum-factor
of 0.075 were used. More on model development and the result

is provided in the later sections.
2) ANN Model Development: Development of ML-BPANN

models for any process (like rainfall-runoff) requires step-
wise procedure among which division of data into training
and testing, identification of input and output variables, nor-
malization of the data, selection of the network architecture
(number of layers), determining appropriate number of hid-
den layer neurons, training of the network, and finally, the
validation of the ANN model are more prevalent. With the
division of data being done, other steps are illustrated below
sequentially. Only output variable (runoff), Q(t), at time-step
t was used in the development of ANN models. The input
variables for the ANN models were determined based on
an extensive cross-correlation and auto-correlation analysis of
all the three catchments’ data. The threshold autocorrelation
values for Kentucky, Alsea, and Bird Creek of 0.5, 0.5, and
0.6; and cross-correlation values (with rainfall) for Kentucky
and Bird Creek of 0.27 and 0.46, respectively, were used for
the determination of input variables. Input variables for the
three catchments were found out as mentioned in Table II.

With the identification of the relevant input and output
variables; consideration of only single layer ANN models;
division of the catchments’ data; and scaling of data from
0.1 to 0.9, initial four steps of ANN model development are
completed. Now, for the determination of an optimum number
for the hidden layer neurons, a trail and error method was
employed with a performance comparison of each catchment’s
trained ANN models having I-N-1 architecture where I is the
total number of input variables (I = 6, 5, and 7 for Kentucky,
Alsea and Bird Creek, respectively), N is the number of hidden
layer neurons varying from 1 to 14 and 1 is the number of
output variable. As previously mentioned, back propagation
algorithm was used for model training with learning constant
as 0.005 and momentum factor as 0.075.

The five models’ performance evaluation metrics used for
this study are Sum Square Error (SSE), Average Absolute
Relative Error (AARE), Coefficient of Correlation (R), Nash-
Sutcliff Efficiency (E), Normalized Root Mean Square Error
(NRMSE), and Threshold Statistics (TS). These are commonly
used error statistics and interested readers would find their
detailed description in studies by Jain et al. (2001). During
training, the acceptable level of SSE was fixed at 0.0001 and
the maximum iterations were limited to 50,000. Optimum
architectures of catchments’ ANN model were found by
error visualization plots and error statistics. For all the three
catchments, the plots between the error metrics and the number
of hidden layer neurons are illustrated in figure 3. Both the
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(a) Kentucky

(b) Alsea

(c)
Bird Creek

Fig. 3: Visualization Plots of Error Metrics vs Number of
Hidden-Layer Neurons for the three catchments

training and testing error statistics for the best ANN models
are also presented, in Table III.

For Kentucky River Basin, 6-2-1 architecture, with the
least SSE value of 0.00022 and 0.00027 during training and
testing respectively, was the unanimous winner and hence,
selected. During both training (fig.3a) and testing results, it
was evidently prevalent that the chosen 6-2-1 ANN model had
the preferable maximum values of TS5 (70.64 %, 72.64 %),
E (0.930, 0.914) and R (0.965, 0.954) and minimum values
of AARE (55.84, 57.67) and NRMSE (0.110, 0.124) amongst
all of the possible 6-N-1 models.

In case of Alsea River basin, most of the metrics except
AARE are not visually comparable as per fig.3b. Observing
the objective least value of AARE during training, models
having a number of hidden neurons 2, 9 and 14 with AARE
values 35.94, 36.72 and 39.32 are deemed to be the best
candidates. With further examination during testing, it was
found that 5-2-1 didn’t have the least AARE value with 34.88
compared to other architectures (least was 29.77 for 5-9-1).
But, considering the parsimony principle and simplicity law,
5-2-1 was considered for further proceedings [22]. During
training (fig.3c), R, E, TS5, and NRMSE values are not helpful
in clearly selecting the optimum architecture of ANN models
for Bird Creek catchment. Although based on the lowest
AARE (44.42) value of model 7-3-1, it seemed a clear choice.
Moreover, this structure choice was further verified with a
second-best AARE value of 76.28 as compared to not much
lower 75.34 of 7-4-1 during testing. So, in the end, 7-3-1 ANN
model was selected for the third and final basin.

TABLE III Statistical Results of Three Catchments’ Best
ANN Models

Models
Error Metrics

NMRSE E R AARE TS5 TS10 TS25

During Training

6-2-1 0.110 0.930 0.965 55.84 70.64 86.91 98.36
5-2-1 0.130 0.821 0.906 35.94 85.47 93.00 98.21
7-3-1 0.068 0.981 0.992 44.42 91.59 96.83 99.47

During Testing

6-2-1 0.124 0.914 0.954 57.67 72.64 86.71 97.70
5-2-1 0.198 0.836 0.915 34.88 71.29 87.29 96.29
7-3-1 0.076 0.990 0.995 76.28 91.88 96.76 99.71

IV. KNOWLEDGE EXTRACTION

Although ANNs have a well-proven capability of solving
different as well as highly complex problems in the field of
engineering, finance, medicine and many others. But, they
still suffer from its cardinal “Black-box” nature. Hence, it
is necessary to pursue research related to extraction of hid-
den knowledge embedded in the trained ANNs. Knowledge
Extraction for function approximating and forecasting ANNs
can be simply understood as an attempt to expose the internal
mechanism which ANN models uses to reach a certain output
for the given input i.e., an explanation of the approximated
function generated by the ANNs. There are many approaches
available to explore the physics of a trained ANN model and
the examination of hidden neuron outputs’ different forms is
one of the widely employed one. In this study, different forms
of the hidden neuron outputs from three ANN RR models,
previously developed for the three catchments, are analyzed
with an objective of extracting important and useful knowledge
by using model’s and preliminary-process’ information.

This study is heavily dependent on an initial logical assump-
tion which states that hidden layer neurons of a trained ANN
model might represent the modeled physical system’s different
sub-processes. For example, the two hidden layer neurons of
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Fig. 4: Scatter Plots of Hidden Neuron Outputs vs Base, QG; and Surface, QS flows for Kentucky River Basin

6-2-1 ANN model of Kentucky River basin may be separately
modeling the internal sub-components of the rainfall-runoff
process. Now, these sub-components can be either infiltration,
base flow, sub-surface flow, evaporation, soil moisture or oth-
ers. However, the purpose of this study is limited to only two
major conceptual components of the rainfall-runoff process
which are surface flow QS(t), and sub-surface (or base) flow
QG(t). A linear addition of these components forms the ob-
served streamflow QO(t) i.e., QO(t) = A∗QS(t)+B∗QG(t).

Base flow was calculated using the base flow recession
concept, QG(t) = KG(t) ∗QG(t− 1) where KG(t) is the re-
cession coefficient of the base flow at time t. The mathematical
expression for KG(t) is KG(t) = QG(t−1)/QG(t−2). And,
then from the above observed-streamflow equation, surface
flow QS(t) values were found.

The different forms of hidden neuron outputs considered
in this study are hidden neuron outputs (Hi) and partial net-
work outputs (Oi). Hidden neuron outputs, Hi, are immediate
outputs from ith hidden layer neuron while partial network
outputs, Oi, are calculated by turning off the connections
between the output neuron and all the other hidden neurons
except ith. Here, output neuron is provided a linear activation
function which implies that partial network outputs Oi are
nothing but the multiplication of hidden neuron outputs Hi
(and Hbh) and its respective connecting weight Wio (and
Wbho) with the output neuron. Mathematical formulations of
Hi and Oi are as follows:

Hi =
1

1 + e−neti

Oi =
1

1 + e−[HiWio+HbhWbho]

where, neti =
∑m

j=1 Ij ∗Wij ,
Ij = jth input layer neuron,
Wij = weight connecting jth input neuron to the ith hidden
layer neuron,
m = total number of input layer neurons,
Hbh = hidden layer bias output,
Wbho = weight connecting hidden layer bias neuron to the
output neuron,
Wio = weight connecting ith hidden neuron to the output
neuron.

The knowledge extraction methods, Graphical Techniques
and Correlation Analysis, used in this study considered either
hidden neuron outputs (Hi) or partial network outputs (Oi)
or both. The detailed investigation of the selected three ANN
models for exploring their physical significance through the
two methods is described below.

A. Graphical Technique

In the graphical techniques, insights about physical concep-
tual components’ (sub-processes) significance which might be
possibly captured by the above best ANN models chosen for
the three catchments were found. For all the three models,
scatter plots were generated between Hidden neuron outputs,
Hi and Surface flow, QS(t); Hidden neuron outputs, Hi and
Sub-surface flow, QG(t); and, Partial network outputs, Qi and
Network output, O(t). These plots are provided and discussed
in the following sub-sections for each of the catchments.

1) Kentucky River Basin: Figure 4 shows the scatter plots
for the 6-2-1 ANN model of Kentucky river basin. Before
inferencing the graphs, let’s establish an obvious but important
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Fig. 5: Scatter Plots of Hidden Neuron Outputs vs Base, QG; and Surface, QS flows for Alsea River Basin

characteristic of stream flow. At the outlet of the catchment,
stream flow is generated majorly from two components that are
base flow and surface flow (QG and QS respectively). Now,
surface flow comprises a major portion of the end flow of
the stream while base flow is smaller in magnitude which is
almost self-understood because of its dense traveling medium.

Based on the plots of H1 with QS and QG, it is observed
that H1 is not correlated with the surface flow and hence,
might have a plausible relationship with the other conceptual
component, base flow. From the other scatter plots involving
H2, it can be evidently concluded that H2 is only related to
surface flow if any. This claim is also backed by a strong
negative correlation of it with the surface flow. Plots of
network’s output O with its partial outputs O1 and O2 points
out that partial output O2 is strongly correlated with O but
only at larger values and O1 with O at smaller values. Since
larger values of surface flow influence the stream flow much
more as compared to larger values of base or ground flow,
one can inference that O2 signifies the presence of surface
flow in its numeric values. Hence, it is finally concluded that
H2 related to O2 is modeling the surface flow.

A most interesting observation which is striking enough for
more valid confirmation is that H1 and H2 are demarcated
with H1 bounded between 0 to 400 while H2 varying from
500 to 2000. So, H1 and H2 clearly represent low and high
flows corresponding to the base and surface flows. With these
findings, there is a clear suggestion of the hidden neuron
specialization in the 6-2-1 ANN model of the Kentucky river
basin. The first hidden neuron H1 is observationally modeling
the base flow while the surface flow is most probably being

modeled by H2. These observations are further explored by
the 6-2-1 ANN model’s correlation analysis which is to be
described later under sub-section B.

2) Alsea River Basin: Similar to the Kentucky river basin’s
6-2-1 ANN model, Alsea river basin’s 5-2-1 ANN model is
also explored to extract the significant and useful knowledge
by observing same kind of scatter plots between different
forms of hidden neuron outputs (H1, H2, O1, and O2), network
output (O), and rainfall-runoff process’ conceptual components
(QS and QG) as shown in figure 5.

From scatter plots of O1 and O2 with O, it is prominent that
O has a very strong positive relationship with O1 at smaller
magnitudes while a reasonable relationship with O2 at higher
magnitudes exactly similar to the previous case of Kentucky.
This clearly indicates that O1 and O2 are idiosyncratically
modeling respective base (QG) and surface (QS) flows. The
observation is further boosted by the hidden neuron outputs
(preceding the partial network outputs), H1 and H2, showing
a relationship with QG and QS, respectively, with no hint
of correlation with the other component. Also, there is a
notable and insightful demarcation of hidden neuron outputs’
range between 0 to 150 for H1 and 150 to 350 for H2
which further supports the concluded hypotheses. Hence, the
inferences of hidden neuron specialization for 5-2-1 ANN
model of Alsea are exactly similar to the previous Kentucky
case with H1 clearly modeling the base flow while H2 the
surface flow. These results are again explored and testified by
model parameters’ correlation analysis.

3) Bird Creek River Basin: Compared to first two catch-
ments, ANN model (7-3-1) of Bird Creek river basin has
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Fig. 6: Scatter Plots of Hidden Neuron Outputs vs Base Flow, QG; and Surface Flow, QS for Bird Creek River Basin

3 hidden neurons which poses a certain degree of difficulty
in inferences as there were only two hidden neurons in the
previous two cases. Moving forward, it can be seen from the
plots that H1, H2, and H3 (Figure 6) are demarcated within 0
and 250, 300 and 1000, and 175 and 400 respectively which
points towards a possibility of H1 modelling the base flow,
H2 modelling the high surface flow, and H3 modelling the
medium surface flow.

From Hi (i=1, 2 or 3) vs QG (or QS) scatter plots, the
envelope curve over H1 vs QG is similar to a base flow
recession curve, H1 vs QS shows marginal correspondence,
H2 and H3 are highly correlated with QS at relatively higher
and smaller values which are indicating towards the similar
conclusions as made above. Further examination of O1, O2,
and O3 vs O scatter plots reveal that O1 and O3 have a
small correlation but only at smaller values along with a
relatively steeper relationship for O1. And, O2 is clearly in a
strong harmony with O. These observations finally concludes
that 7-3-1 ANN model of Bird Creek had a hidden neuron

specialization with H1, H2 and H3 modeling base, high
surface, and medium surface flows respectively. More on this
is in the correlation analysis part.

B. Correlation Analysis

Until now, the graphical method has resulted in several
visually observational important hypotheses which are still
in a need for more verification. Here, Correlation analysis is
used as a decisive technique to testify the previous graphical
method’s findings. Correlation analysis also assumes a similar
hypothesis that trained ANN model’s hidden neurons represent
conceptual components of the modeled physical process. The
forms of hidden neuron outputs (i.e., Hi and Oi which are ith
hidden neuron output, and partial network output when only ith
hidden neuron is remained turned on) used to develop scatter
plots in the graphical method are also used here to determine
correlation coefficients with their respective parent model’s
input variables and study-restrained conceptual components
(QG and QS). In addition to that, correlation coefficients of Oi
and O are also calculated. The results for each catchment are

9



Knowledge Extraction from Rainfall-Runoff ANN Models

displayed in tables 4, 5 and 6 (for Kentucky, Alsea and Bird
Creek, respectively) which are also supported by subsequent
explanations or data inferencing.

1) Kentucky River Basin: In 6-2-1 ANN model of Kentucky
river basin, there are 6 input variables (flow at t-1, t-2, & t-3
and rainfall at t, t-1, & t-2) and one output (flow at t, O(t)).
From the correlation coefficients of these variables (Table IV)
and two conceptual components (QS(t) and QG(t)) with hidden
neuron outputs (H1, H2, O1, and O2), the present author
observes that H1 and H2 are comparatively better correlated
with runoff and rainfall input variables respectively. Because
rainfall is the primary source of most of the surface flow, H2
might be modeling the surface flow which is responsible for
producing the flow hydrograph’s rising limb.

TABLE IV Correlation Statistics for Kentucky River Basin

Variables Hidden Neuron Outputs Partial Network Outputs

H1 H2 O1 O2

Q(t-1) -0.8221 -0.6583 0.7902 0.6588
Q(t-2) -0.8280 -0.3859 0.7966 0.3743
Q(t-3) -0.7624 -0.2363 0.7397 0.2221

P(t) 0.1558 -0.5951 -0.1809 0.5725
P(t-1) 0.0015 -0.7405 -0.0272 0.7332
P(t-2) -0.3101 -0.3868 0.2973 0.3888
QG(t) -0.6071 -0.3349 0.6041 0.3128
QS(t) -0.5494 -0.8232 0.5231 0.8412
O(t) - - 0.6733 0.8822

Moreover, the correlation strengths of H1 with QG and
H2 with QS are high (-0.6071 and -0.8232) compared to the
reversed ones (-0.5494 and -0.3349), and this further indicates
that H1 and H2 might separately be modeling base and surface
flows. The preliminary inference is also strengthened by partial
network output O1’s poor correlation values with rainfall input
variable (ranging from -0.1809 to 0.2973) compared to that of
runoff (from 0.7397 to 0.7966), and O2’s strong correlation
with the surface flow (0.8412) compared to O2 with the
base flow (0.3128). Hence, the correlation analysis’ inferential
findings are clearly consistent with the previous results of
the applied graphical method on the 6-2-1 ANN model of
Kentucky catchment. Now, the conclusions can be drawn that
hidden neuron outputs H1 and H2 are separately modeling the
base and surface flows of the rainfall-runoff process.

2) Alsea River Basin: 7-2-1 ANN model of Alsea river
basin has only runoff input variables at time steps t-1, t-2,
t-3, t-4, and t-5. And, from the correlation coefficients of
hidden neuron outputs as given in Table V, Hi and partial
network outputs, Oi with these input variables, it is observed
that both H2 and O2 are very strongly correlated with Q(t-1)
and QS(t) having values -0.5020, -0.5392, 0.5176 and 0.5439
as compared to coefficients with other runoff inputs and base
flow (-0.1392 and 0.1383). These values lead to a reasoning
that H2 is possibly modeling the surface flow.

And, H1 and O1 are both heavily associated with all input
variables and considerably more correlated with the base flow
than surface flow. All of these observations can be very-well
reasoned to establish the feasibility of H1 and H2 modeling

the base and surface flows. The inferences, similar to the
ones made for Kentucky river basin’s ANN model, are exactly
consistent with the graphical method’s findings and hence,
can be considered as the verification of probably existent
hidden neuron specialization in rainfall-runoff ANN models
of different catchments.

TABLE V Correlation Statistics for Alsea River Basin

Variables Hidden Neuron Outputs Partial Network Outputs

H1 H2 O1 O2

Q(t-1) -0.9450 -0.5020 0.9696 0.5176
Q(t-2) -0.9210 -0.1354 0.9158 0.1298
Q(t-3) -0.8261 0.0785 0.8362 -0.0981
Q(t-4) -0.7664 0.1634 0.7673 -0.1833
Q(t-5) -0.7198 0.1598 0.7099 -0.1916
QG(t) -0.7477 -0.1392 0.7385 0.1383
QS(t) -0.5764 -0.5392 0.5845 0.5439
O(t) - - 0.9749 0.5529

3) Bird Creek River Basin: The optimum ANN model
structure for Bird Creek river basin’s hourly data (dissimilar
to the daily data of other two catchments) consists of seven
input variables (i.e., runoff at t-6, t-12, t-18, & t-24 and rainfall
at t-36, t-42, & t-48). First glance on these variables’ and
conceptual components’ (QS(t) and QG(t)) correlation coeffi-
cients with hidden neuron outputs (Hi and Oi), as mentioned in
Table VI, helps us make a preliminary observation that H1 is
more strongly correlated with discharge and less with rainfall
inputs than H2 and H3. And, same is true for partial network
outputs Oi. With this, a conclusion of H1 modeling the base
flow would be too far-fetched as both H1 and O1 are better
correlated with QS (-0.8465 and 0.8131) than QG (-0.4134
and 0.3976). However, H1’s and O1’s correlation with QG is
more than that with QS relative to all the other hidden neuron
outputs or partial network outputs. And, although the behavior
of H2 and H3 with both types of input are almost similar,
they are more correlated with the surface flow (-0.9433 and
-0.9433) than base flow (-0.2822 and -0.3254). Further, O2
and O3 are showing more correlation with rainfall than 01 is.
So, it can be finally concluded that H1 and both H2 and H3
are modeling base and surface flows respectively.

TABLE VI Correlation Statistics for Bird Creek River Basin

Variables Hidden Neuron Outputs Partial Network Outputs

H1 H2 H3 O1 O2 O3

Q(t-6) -0.9220 -0.9043 -0.6583 0.8902 0.8991 0.9611
Q(t-12) -0.9184 -0.7838 -0.3859 0.8867 0.7793 0.9202
Q(t-18) -0.8831 -0.6414 -0.2363 0.8546 0.6381 0.8446
Q(t-24) -0.8222 -0.5023 -0.5951 0.7990 0.5005 0.7495
P(t-36) -0.3788 -0.5113 -0.7405 0.3744 0.5055 0.5004
P(t-42) -0.2926 -0.5779 -0.3868 0.2729 0.5839 0.5520
P(t-48) -0.3960 -0.4933 -0.3349 0.3805 0.5044 0.4698
QG(t) -0.4134 -0.2832 -0.3254 0.3976 0.2668 0.3376
QS(t) -0.8465 -0.9433 -0.9421 0.8131 0.9347 0.9191
O(t) - - - 0.8557 0.9572 0.9538

In addition to the above, it can be seen that H2 is possibly
more interrelated with rainfall inputs than H1 and H3 can
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be with an only exception at P(t-36) where H3 is the most
correlated hidden neuron output. Also, H2’s relationship with
more closer inputs i.e., Q at t-6, t-12 and t-18 is very strong
compared to that of H3’s, and P(t-36) rainfall would definitely
influence medium surface flows because of the already spent
36 hours. High surface flow at a particular time step mostly
consists the past discharge and more recent rainfalls. So, H2
and H3 are respectively modeling high and medium surface
flows.

Similar to the other two catchments, the correlation analysis’
findings for the Bird Creek exactly matches to that of graphical
methods’ and hence, strengthens the conclusion that rainfall-
runoff ANN models have a hidden-neuron specialization.

V. RESULTS & CONCLUSION

As far as the primary objective of this study is concerned
which is to extract the hidden physics embedded in a rainfall-
runoff ANN model, the current study strongly suggests that
there is a definite hidden-neuron specialization during training
of lesser hidden-neurons single-layer BPANN hydrological
models. In case of all three river basins, the first neuron is
found to be modeling the base flow, rainfall-runoff process’
conceptual component with the help of conducted graphical
and correlation techniques as Knowledge Extraction methods.
And, the second neuron of Kentucky and Alsea river basins is
modeling the other considered conceptual component, surface
flow. Since Bird Creek had a three hidden neurons ANN
model, a more discrete conclusion was made for the second
and third neurons which are found to be modeling high and
medium surface flows. It was also found that rainfall as an
input plays an important role in helping ANN RR models’
hidden neurons discretely capture the sub-processes of the
overall physical system being modeled. The results indicate
that the time scales of the modeled data has an important effect
on the optimum architecture of the ANN models as well as
the knowledge extracted from them.

These preliminary results are subject to studies of different
catchments with varying temporal and spatial characteristics
in proving ANN models’ generalization capability during
the knowledge extraction. And, such studies would be very
exciting to conduct and also resourceful to carry forward the
initial findings of this research study. In addition, there is a
possible scope for a similar research study with more ad-
vanced ANN models or others like Recurrent Neural Networks
(RNNs), Genetic Algorithms (GAs) [9]. It would be interesting
to see the application of the currently employed knowledge
extraction methods on those models. One limitation of this
study was that it only explored two conceptual components
among many others like evaporation, perlocation, infiltration,
soil moisture. A further study including more conceptual
components would definitely provide much deeper insights
into the functioning of the “black-box” ANN rainfall-runoff
models and help us reveal the hidden magic tricks being
performed by them [23]. With similar positive revelations like
this study’s in the near future, we will only bring a new

revolution in the development of many more (and hopefully
better) useful hydrological applications.
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