

Undergraduate Research

Project
CE491A – Under-Graduate Research I

UNDER guidance of DR. ASHU JAIN

Submitted by – SHUBHAM MITTAL (13687)

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

2

DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL

NETWORK MODELLING

Shubham Mittal

ABSTRACT

Artificial Neural Networks (ANN) is a tool of predictive analysis which can learn complex non-linear processes. One such

complex process, rainfall-runoff (RR) modelling in Hydrology has an objective to predict runoff for a catchment and help

to build safety and utility systems for water, a scarce resource. The purpose of this study is two-fold. Foremost one is to

provide a detailed analysis of comparison between conventional conceptual models like AWBM & TANK and relatively

new modelling methodology like Multi-Layer Perceptron Neural Networks (MLPNN). Second objective is to evaluate the

performance of recently published deep learning optimization algorithm.

Keywords – Rainfall- Runoff (RR) Modelling, Artificial Neural Network (ANN), AWBM Model, TANK Model, Conceptual

Runoff Models.

I. INTRODUCTION
Rainfall-Runoff is a hydrologic process which can be

arguably considered as one of the most researched topic in
the field of hydrology modelling. Different methodologies
have been applied in an attempt to constantly improve the
modelling of this highly complex and implicit but yet
deterministic chaotic system [1]. Researchers and engineers
have tried both physical & mathematical modelling with
both having advantages and disadvantages of their own.
Modelling of this non-linear, dynamic (time-variant) &
continuous process continually becomes a topic of research
as soon as new modelling methodologies in scientific
community immersed. An objective of designing better
hydraulic systems like culverts, dams, at al. depends on the
estimation of runoff values for a catchment. Few of the
most widely applied techniques to estimate runoff values
are physical modelling and mathematical modelling. As
described in fig.1, in physical modelling, an output is
directly estimated from analogues or theoretical simulations
of the real processes while mathematical modelling
manipulates the hidden interrelation (linear or non-linear) of
dependent and independent variables with the help of
various mathematical concepts to predict the regression
function. Each modelling process has been scrutinized and
analyzed thoroughly to increase their reliability and
interpretability for real world and real time risk-averse
hydraulic systems.

Rainfall-runoff modelling, a non-linear process
estimates runoff or streamflow for a stream (leaf), river or
catchment with the use of different modelling tools &
techniques as can be seen in fig.1a. The relationship
between rainfall and runoff is very important. This is due
mainly to the fact that rainfall data are commonly used in
flood forecasting and good forecasting methods may be

obtained once the appropriate relationship (with relevant
values of parameters estimated) is established. Moreover,
since rainfall data are normally available for a longer period
than runoff, this availability can be used for filling in
missing values of runoff, or in extending (most frequently
backward) runoff records. For these purposes, the above
relationship is very useful [2]. However, the physical
process involved in RR modelling comprises an arguable
level of uncertainty (because of its chaotic nature i.e., large
number of variable interdependency makes RR modelling
more complex) due to which existing modelling techniques
and results are often questioned and improved. This
uncertainty can be attributed to human developments and
the changes they bring to this hydrologic process. To
mitigate this uncertainty as well as improve the accuracy of
modelling results, researchers continuously work with new
theories and modelling research. One such theory is Neural
Networks, a concept designed to imitate the functioning of
human brain. The cardinal concept was originally
developed by Warren McCulloch and Walter Pitts during
1943 [3]. They created a simple computation model for
processing data and extracting the unobservable (by human
mind) insights. However, neural network research stagnated
after machine learning research by Minsky and Papert
(1969), [4] who discovered two major key issues with
computational machines that processed neural networks.
The foremost was that basic perceptrons (developed by
McCulloch and Pitts) were incapable of processing the
exclusive-or circuit. The second and the main reason was
stagnation was that computers didn't have enough
processing power to effectively handle large neural
networks. Because of these reasons, neural network
research slowed until computers achieved far greater
processing power. When such power was achieved, neural
networks research picked the pace and they also got
recognized in different fields for computational and

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Seymour_Papert

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

3

modelling purposes because of its unparalleled accuracy
levels and quick deployment nature. A core contribution to
this outburst can be acknowledged to non-SMEs (Subject
Matter Experts) in both industries and academia as NNs
were easy to model and didn’t require detailed and in-depth
process functioning. This soft computing methodology,
Neural networks, combines different theories from
computer science, mathematics, and cognitive science and
is one of the most popular modelling technique of this
decade with applications in many fields of social science &
natural science. The framework used for Neural network
RR modelling is illustrated in fig.1b. The input parameters
(rainfall) are feed to a black-box model which estimate the
regression function between response (runoff) and input.
The main advantage of Neural networks over other
conventional modelling methods is its ability to easily map
non-linear functional processes. Hence, it is only reasonable
to apply this revolutionary technique for the hydrologic
process.

Fig.1. Rainfall-Runoff Process and Models

Currently, variants of neural networks have been and are
being developed improving on various limitations of earlier
ones like Multi-Layer Perceptrons Neural Networks
(MLPNN). Different variants of neural networks suitable
for modelling temporal data like rainfall-runoff are
Recurrent Neural Networks (RNNs), Long Short Term
Memory (LSTMs), et al. These methods are relatively new
in rainfall-runoff modelling and are currently a part of
ongoing research. This study, however, concerns with
MLPNN with an overall objective of determining best
possible models for three different catchments. Different
parameters and functionalities (architecture) of MLPNN are
exploited here to achieve the overall objective of this study.
The results also present a comparative analytical study of
neural networks for different spatial locations. The earliest
study for developing a neural network model is dated back
to early 1990s. The application of ANNs in RR modelling
started with preliminary study by Halff et al. (1993) who
used a three layer feed-forward ANN for the prediction of
hydrographs. Since then, Karunanithi et al. (1994), Hsu et
al. (1995), Smith & Eli (1995), Minns & Hall (1996),
Sajikumar et al. (1999), Ehrman et al. (2000), Birikundavyi
et al. (2002), Jain & Indurthy (2003), Jain & Kumar (2007),
Narain & Jain (2010) among many others developed ANN
RR models using collected data from real catchments [5].
All these studies clearly demonstrate that ANN RR models
are powerful tools to forecast runoff in large catchments
which is quite difficult for conceptual models because of
chaotic nature of rainfall runoff process.

In addition, this study also serves as a comparison
between conventional physical models and latest
mathematical models like MLPNN. Physical or conceptual
models replicate the real process mathematically. An
illustration of a physical (conceptual or direct) model can be
seen in fig. 1.c. These models are based on conceptual
theories of rainfall-runoff cyclic process where different
new factors like evaporation, surface flow, interflow,
baseflow, infiltration are also considered for evaluating
final runoff in sub-catchments of a catchments and finally
combining them for catchment runoff. For this study,
physical models TANK and AWBM (to be described later)
are used for modelling rainfall runoff process and its results
are compared with ANN models developed for same
catchments. Fig.2 shows different modelling methods in
both category from which models (with bold text) are
chosen for this study. However, there are other methods
available outside author’s limited knowledge and should be
explored as per requirement.

Fig.2. Practical Models for hydrologic Modelling

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

4

II. MODEL DEVELOPMENT

A. STUDY AREA AND DATA:

Data from catchment of Godaveri, and Jardine rivers

were employed for this study. A brief overview of three

catchments and data used is provided here. Godaveri River

is India’s second largest with an average discharge of 3,505

cubic meter per sec and its river delta supports 729

persons/km2 twice the density of India [6]. The daily

streamflow (m3/sec) data chosen for this study is taken

from parts of Godaveri’s main tributaries Purna, Pravara,

Manjira & Manair. Daily rainfall (mm), maximum (oC),

and minimum temperature (oC) data from 4 gauge stations

at Medak, Nizambad, Hanmakonda & Ramagundam is

collected. The daily total catchment rainfall in mm is

aggregated using simple mean. Sequences of rainfall and

runoff comprises of total 4503 data points which

encompasses 1st January 1986 to 30th April 1998 time

period. After calibrating missing rainfall values using

spatial relationship between different stations, rainfall

series was missing two months of time steps which were

handled during training and testing division. Daily

maximum and minimum temperature of 4 stations were

used to evaluate daily potential evapotranspiration (mm)

which was an input parameter for physical models. The

method used was Hargreaves ETo equation [7].

The daily streamflow (or runoff) (m3/s) data at Telegraph

line (gauging station number 927001), the average of daily

rainfall (mm) data from five rain gauges located at

Bamaga, Cape York Post Office, Eliot Falls, Jardine

Monument, and Peak point stations distributed all through

the catchment, daily evapotranspiration (mm) data from

Jardine River near Far North Queensland, Australia for a

16-year period (1/1/1974–27/11/1989), 5810 days, was

considered for this study. The catchment occupies an area

of 2,500 square km. [8]. Runoff time series was missing 78

continuous values. The data was collected from Rainfall

Runoff Library (RRL) [9] default datasets. The Rainfall

Runoff Library (RRL) is designed to simulate catchment

runoff using daily rainfall and evapotranspiration data.

RRL is used to implement conceptual physical models for

RR modelling.

The statistics of study data is provided in Table 1 and

graphical representation of rainfall and runoff series for

catchments can be observed in fig.3. The study data is

divided into training and testing data (as mentioned above)

with lengths such as statistical characteristics of training

data were shadowing or atleast similar to that of testing

data to avoid erroneous result as it is intuitively evident

that a statistically different or overpowered test data will

result in over-fitting (or generalization) issues. Data pre-

processing and preparation of lagged series brought the

final data count of Godaveri and Jardine data sets to 4442

and 5731 respectively.

a. Godaveri

b. Jardine

Fig. 3. Rainfall and Runoff Series of Catchments

Table 1: Statistical Analysis of Catchment Data

Variables

Rainfall (mm)
Runoff (cubic m per

sec)

Training Testing Training Testing

Godaveri Data

Count 3000 1442 3000 1442

Min. 0.0 0.0 0.362 0.272

Max. 139.8 95.1 3270.6 1195.1

Mean 2.87 2.08 61.93 55.34

SD 8.97 7.17 169.96 133.17

 Jardine Data

Count 3500 2231 3500 2231

Min. 0.0 0.0 0.45 0.18

Max. 162.6 135.8 21.41 12.09

Mean 4.63 4.32 2.59 2.11

SD 12.3 11.76 2.64 2.16

B. MODEL PERFORMANCE:

The performance of the models developed in this study

was evaluated using different standard statistical measures.

The employed error statistics and their detailed description

is given below:

1. Mean Absolute Error, MAE:

MAE has a clear interpretation as the average absolute

difference between two variables predicted runoff (Qp) and

observed runoff (Qo). It is calculated as simple mean of

total absolute difference over time steps N.

MAE = (1/N)∑ |Qo(t)-Qp(t)|

Where, Qo(t) is observed output at time t,

https://en.wikipedia.org/wiki/Drainage_basin

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

5

Qp(t) is predicted output at time t,

N is total number of time steps for which MAE is

calculated.

As obvious, lower values of MAE depict a better model.

2. Average Absolute Relative Error, %AARE:

AARE metric is useful in measuring the relative error of

a variable’s single observation. AARE prevents large

observations to misrepresent the performance of a model. It

is calculated by taking mean of relative error for a data

point.

AARE = (1/N)∑ |Qo(t)-Qp(t)|*100/Qo(t)

Where, terms are similar as mentioned above.

Similarly to MAE, lower values represent better model

compare to large values.

3. Root Mean Square Error, RMSE:

It is a standard measure of error in many function

approximation problems like RR modelling. However,

RMSE is prone to give bias results towards high magnitude

differences between observed and predicted variable due to

difference’s square in the numerator as can be seen below.

RMSE = {(1/N)∑ [Qo(t)-Qp(t)]2}1/2

AARE is a better indicator than RMSE as RMSE is

biased towards large values of a variable to be evaluated.

4. Nash-Sutcliffe Efficiency, E:

Nash-Sutcliffe Coefficient of Efficiency compares

predicted and observed values and evaluates the efficiency

of network to explain the variance of data. Its value varies

from -∞ to 1 with 1 being the best and value closer to -∞ as

worst and value just less than 0 means that mean of a

variable (naïve model) is a better predictor than the model.

It is calculated as,

E = (E1-E2)/E1

E1 = ∑ [Qo(t)- (1/N)∑Qo(t)]2

E2 = ∑ [Qo(t)-Qp(t)]2

As compared to above error metrics, higher values of E

are preferable for better model performance.

5. Pearson Coefficient of Correlation, R:

Correlation coefficient, R, measures the strength of

linear correlation between observed and predicted output.

R is calculated as covariance (Cov) between observed and

predicted outputs divided by standard deviations (SD) of

both predicted and observed outputs. Its values ranges from

-1 to +1 with value close to 1 as best and close to 0 as

worst model performance. -1 represent a perfect negative

relationship between two variables but in RR modelling,

values always lie between 0 and 1. Mathematically, R is

calculated as:

Cov = ∑ {[Qo(t)- (1/N)∑Qo(t)]*[Qp(t)- (1/N)∑Qp(t)]}

SDo = {∑ [Qo(t)- (1/N)∑Qo(t)]2}1/2

SDp = {∑ [Qp(t)- (1/N)∑Qp(t)]2}1/2

R = Cov / (SDo* SDp)

 Where, SDo is standard deviation for observed output,

 SDp is standard deviation for predicted output.

6. Normalized Mean Bias Error, NMBE %:

NMBE indicates the overall bias of the model i.e.,

whether the model is overestimating or underestimating the

output variable. It is measured by calculating mean error of

output and dividing it by mean of observed output. The

mathematical expression for MBE is:

NMBE = [(1/N)∑ (Qo(t)-Qp(t)]*100/[(1/N)∑Qo(t)]

Positive value of NMBE indicates overall overestimation

while negative value mean overall underestimation by the

model in question.

7. Threshold Statistics, TSx:

All the above mentioned error statistics give us an idea

of overall performance of a given model. But, usually, for a

better interpretation of a model at different level of

Absolute relative error (ARE) is needed. Threshold

Statistic (TS) evaluates the percentage of output values

forecasted below a certain level of ARE (say, x %). Here,

ARE is calculated as

ARE (%) = |Qo(t)-Qp(t)|*100/Qo(t)

Hence,

TSx = (nx/N)*100

Where, nx is number of data points forecasted below x%

ARE,

ARE dependent terms and remaining ones can be

referred in above error measures

Intuitively, large % of TSx at small x represent a good

model performance.

8. Relative Error in Maximum Flow, %MF:

The relative error in maximum value of output variable

provides information about the over or under-estimation in

predicting the maximum value of output variable. It is

computed by following expression.

%MF = Qo(max)-Qp(max)*100/Qo(max)

Where, Qo(max) is maximum value of output variable,

Qp(max) is the predicted value of maximum value of

output variable.

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

6

Minimum value closer to 0 in any case (positive or

negative) means a very good model performance.

C. CONCEPTUAL MODEL DEVELOPMENT:

A conceptual model is representation of a system

(physical or man-made), made of composition of various

concepts (theories about the system) which are used to

simulate the system the model represents (Conceptual

Model, Wikipedia). Rainfall-Runoff hydrologic process, a

system of various observationally developed concepts, had

been simulated by different conceptual models in literature.

In a conceptual model developed here, input parameters

(rainfall & potential evapotranspiration (PET)) considered

to be interrelated to output variable are converted to output

(runoff) with the help of concepts engaging these variables

with each other. Rainfall dependency can be seen from

fig.3. Fig.4 shows how evapotranspiration (ET) has a

seasonal as well as positive relationship with runoff (Q).

During each year, just before runoff peaks (for both

catchments), evaporation peaks can be observed which can

infer to a lagged relationship of Q(t) with ET(t-k) where t-k

is k days before tth day. Fig. 4 also have a small

timeframe’s (1/6/1989 to 31/10/1989) graph, where the

inference can be held valid.

a. Godaveri

b. Jardine

c. Subset of Jardine

Fig.4. Evapotranspiration Series of Catchments

Among few conceptual models, AWBM and TANK are

used in this study for benchmarking the performance to be

compared by ANN models. These concept of these

conceptual models is briefly described here.

AWBM:

The Australian Water Balance Model (AWBM) is a

catchment water balance model that relates daily rainfall

and evapotranspiration to runoff, and calculates losses from

rainfall for flood hydrograph modelling. It was originally

developed by W.J. Boughton [10]. The input variables for

AWBM are daily rainfall and potential evapotranspiration

(PET). Compared to rainfall, evapotranspiration has little

influence on the water balance at a daily time scale and

thus areal potential evapotranspiration (calculated using

Hargreaves ETo equation) is used (Boughton & Chiew

2003). Structure of AWBM rainfall-runoff model is

illustrated in fig.5. The AWBM model uses three surface

stores to simulate partial areas of runoff, each representing

user defined land use or soil classifications as proportions

of the area of the catchment. The water balance of each

surface store is calculated independently of the others. At

each time step, in the model, rainfall is added to each of the

three surface moisture stores and evapotranspiration is

subtracted from each store.

Storen = Storen +rain-evaporation (n=1, 2, 3)

If the value of moisture in the store becomes negative,

the moisture content of the store is set to zero, as the

Evapotranspiration demand is higher than the available

moisture. If the value of moisture in the store exceeds the

capacity of the store, the excess moisture is counted as

runoff and the moisture content of the store is set to

capacity.

Fig.5. Structure of AWBM rainfall-runoff model

[https://wiki.ewater.org.au/display/SD41/]

When runoff occurs from any store, part of the runoff

becomes recharge of the Baseflow store. Its value being

BFI*runoff where BFI is called Base Flow Index. This is

defined to be the ratio of Base Flow to Total Flow in the

stream flow. The remainder (i.e. (1-BFI)*runoff) is surface

runoff.

https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Simulation

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

7

The baseflow store is depleted at the rate of (1-K)*BS

where BS is the current moisture in the base flow store and

K is the base flow recession constant of the time step being

used. The surface runoff can be routed through a store if

required to simulate the delay of surface runoff reaching

the outlet of a medium to large catchment. The surface

store acts in the same manner as the base flow store and is

depleted at the rate of (1-KS)*SS, where SS is the current

moisture in the surface runoff store and KS is the surface

runoff recession constant of the time step being used. The

total runoff is calculated as the sum of routed surface

runoff and the base flow. The output may be saved in

ML/day, m3/s or mm/day.

TANK Model:

The TANK model (Sugawara, 1961) is also applied to

analyze daily discharge from daily precipitation and daily

evaporation inputs. It is a simple model consisting of four

tanks placed vertically in a series (Fig.6).

In TANK model, precipitation is poured into topmost

tank and evaporation is subtracted. This process is carried

out subsequently for tanks 2 and 3 moving downwards. As

each tank is emptied the evaporation shortfall is taken from

the next tank down until all tanks are empty. The outputs

from the side outlets (q11, q12, q2 & q3) are taken as runoff.

Runoff outputs from the top 3 tanks are calculated using a

formulation which can be studied in [5]. If the water level

is below the outlet no discharge occurs. Runoff from the

different tanks are as follows:

1. Top tank: Surface runoff

2. Second tank: Intermediate runoff

3. Third tank: Sub-surface runoff

4. Fourth tank: Base-flow

Fig.6. Structure of TANK rainfall-runoff model

The model seems to be simple but its output depends

upon various parameters like the content of each store. The

volume of each storage tank considerably effects the

runoff. The tank model is a non-linear model. Here, instead

of daily evaporation as input, daily evapotranspiration was

used.

Both AWBM and TANK are easy to apply with the use

of a tookit named Rainfall Runoff Library (RRL) (CRC,

Corporate Research Centre for Catchment Hydrology). The

toolkit can be downloaded from [9].

 For both AWBM and TANK, Calibration Optimiser and

Objective Function used were Genetic Algorithm and

Nash-Sutcliffe criterion (Coefficient of efficiency, E). For

conceptual models, Godaveri data set consisting a total of

3467 was used. The calibration was based on: Runoff

difference in %. The Jardine data (5810 data points) for

conceptual models was divided as 3486 for calibration and

2324 for testing (or verification). Similarly, Godaveri data

(3467 data points) was divided with training and

verification sets of 2139 and 1328 respectively.

Daily RR modelling results from AWBM and TANK for

two catchments Godaveri and Jardine were found out using

error statistics as described in section II. The results of

AWBM and TANK are analyzed and compared with other

models (ANN model) in section III.

D. NEURAL NETOWRK MODEL DEVELOPMENT:

1. ANN MODEL:
An artificial neural network (ANN) is a modelling

technique developed to mimic a "brainlike" system of
interconnected processing units (called neurons) proposed
by McCullock and Pitts in 1943 that learn patterns from
past data and predicts for new events. They have vast
applications for different purposes in different fields, but
are hugely appraised & popular for forecasting, and
classification problems. In fig.7, an illustration of a simple
three layer feedforward ANN is given. As can be seen, an
input layer with multiple neurons feeds information (input
variables data) to middle layer and middle layer processes
the information to further move it to an output layer which
finally produces the output. Now, input layer does not
directly feed raw input to the middle layer neurons. Each
input layer neuron is connected to every middle layer
neuron and these connections provide different weights
(w11, et al.) to each input variables before entering into any
middle layer neurons. The weights are initialized with
random numbers and learned over epochs during training.
Most of the research on ANNs justifies that the
initialization of weights should be done in such a way that
the summation of all weights should be exactly 1. This
heuristic make ANN unbiased during training. Middle &
output layers, similar to input layer, can also have one or
more number of neurons depending upon the process. For
RR modelling, output variable is runoff. Similar to input
layer, each middle layer neuron is also characterized by a
weight (wh1O, wh2O, et al.) mapped to output layer neuron.

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

8

These weights are also initialized similar to input layer
neurons and are finally learned as training epochs end.
Another parameter bias*weight (weights are bi1, bi2,….,bhO

which are also learned during training) is added into
weighted inputs’ summation and feed to their respective
hidden and output layer neurons before activation function
is triggered. Bias neuron of both input and middle layers are
taken as 1 which is later multiplied by its learned
connection weight to next layer neurons. Unlike input layer
neurons, middle layer neurons consist of activation
functions (to be discussed later) which process the
summation of all weighted inputs from input neurons and
bound them. Usually the activation function bound the
value (coming) between 0 and 1 to make the processing of
ANN fast and efficient. The outgoing activated values from
middle layer neurons are again weighted and summed in
output layer neuron which may or may not apply activation
function to finally produce the output.

A very popular ANN framework, Multi-Layer
Perceptron Neural Network (MLPNN) with one or more
layers between input and output layer is very widely used
for supervised learning of non-linear processes. For RR
modelling, it has been found out that one hidden layer
ANNs are sufficient for good results as well as quick
deployment & interpretability. It can be easily seen that
more hidden layers would result in loss of model
interpretability and more processing time. To understand
the drawbacks of more hidden layers or complexity, one
can refer to theory of trade-off between variance and bias of
a statistical or mathematical model.

Fig.7. Structure of a feedforward ANN model

For this study, ANN models with one hidden layer of
multiple neurons and an output layer of one neuron were
developed and compared for performance evaluation.
Activation function, ReLU (Rectified Linear Unit, to be
discussed later) was equipped in middle layer neurons with
a linear activation function in output layer neuron. Linear
activation function is a linear regression line (y = x) which
gives output same as input. From this, we can infer that

output (rainfall) is a linear combination of inputs from
hidden layer neurons with weights as parameters.

To decide on number of neurons in hidden layers,

various studies on different datasets have been analyzed to
observe a pattern and a generalized rule of thumb is now
used to limit the number of possibilities to save time and
resources. There are many rule-of-thumb methods for
determining a good number of neurons to be used in hidden
layers, such as the following:

 The number of hidden neurons should be between the
size of the input layer and the size of the output layer.

 The number of hidden neurons should be 2/3 the size of
the input layer, if not sufficient then plus the size of the
output layer.

 The number of hidden neurons should be less than
twice the size of the input layer.

Activation Function:

For deploying activation function at ANN model

neurons, there are various functions available. The most

widely and popularly used in hydrological modelling

(Dawson & Wilby, 2001), Sigmoid function is a non-linear

continuous, bounded, non-decreasing, and differentiable. It

maintains the output value from a neuron within 0 and 1.

The use of such logistic function induces non-linearity in

ANN models which makes them a perfect candidate for

modelling non-linear chaotic yet deterministic processes

like RR hydrological process. Fig.8 shows the sigmoid

function. Mathematically, sigmoid function is described as,

f(x) = 1/(1+e-x)

Fig.8. Activation Functions

However, for this study, a relatively new (Hahnloser et

al. 2000, [11]) activation function, Rectifier (fig.8) which is

widely used in deep neural networks [12] was used. It is

defined as,

f(x) = max(0,x)

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

9

Rectifier is non-differentiable at 0 (differentiable at all

other values) which is a disadvantage in learning of the

ANN model but can be managed by manipulating input

variables to never be 0 (data scaling was done between 0.1

and 0.9 which is good for a rectifier function). A unit

employing a rectifier is called Rectified Linear Unit

(ReLU). Rectified linear units, compared to sigmoid

function or similar activation functions, allow for faster

and effective training of deep neural architectures on large

and complex datasets. The advantage of rectifier function

is that it functions as a regularizer (like ridge or lasso

regularizers) to balance between bias and variance as

complexity of a model increases.

Representation of ANN model’s output:
Now, the final output from a three-layer ANN model with

ReLU activation function can be represented as:

HIj = ∑ Ii*wij + 1*bI
j

HOj = fH(HIj) = max(0, HIj)
OIk = ∑ HOj*wjk + 1*bH

k
Ok = fO(OIk) = OIk

Where, Ii = input to and from ith input layer,
bI

j = connection weight of input layer bias and jth hidden
layer neuron,
wij = connection weight of ith input layer neuron and jth
hidden layer neuron,
HIj = input to jth hidden layer neuron,
fH(HIj) = ReLU activation function deployed on jth hidden
layer neuron,
wjk = connection weight of jth hidden layer neuron and kth
output layer neuron,
bH

k = connection weight of hidden layer bias and kth output
layer neuron,
OIk = input to kth output layer neuron,
fO(OHk) = linear activation function at kth output layer
neuron, and
Ok = output from kth output layer neuron

Optimization Learning Algorithm:

 Until now, we have discussed about the architecture of

ANN model. But, ANN models are mostly appraised for its

ability to learn highly complex functions which many

mathematical or conceptual models fail to map. ANN

model maps the input variables with their respective output

variable with the help of a learning algorithm which

optimizes the error between predicted and observed output

to lowest possible value. ANN models starts with random

weights and iteratively updates the connection weights

through a backpropagation method of iteratively

transmitting output error with the help of gradient (total or

batch) calculated w.r.t. to individual neuron or bias weight

until optimal weights for every connection are found.

Various algorithms had been used for finding optimal ANN

models in RR modelling. One of the most widely used and

superiorly proven optimization method (for RR modelling)

is Levenberg-Marquardt (LM). LM algorithm [13] has

been constantly used in RR modelling in literature and

found out to outperform other backpropagation algorithms

like gradient descent and resilient backpropagation.

For this study, a recently published variant of gradient-

descent, Adam, an algorithm for first-order gradient-based

optimization of stochastic objective functions, was used.

Adam is based on adaptive estimates of lower-order

moments. It is a family member of gradient descent

algorithms with few changes like Adam’s weight update

expression does not contain a learning rate as it is adapted

as per the importance of individual parameter during

updates [14]. Informally, this unique adaption increases the

learning rate for more sparse parameters (dry days) and

decreases the learning rate for less sparse ones (wet days).

This strategy often improves convergence performance

over standard stochastic gradient descent in settings where

data is sparse and sparse parameters like rainfall are more

informative as is the case in RR modelling.

Given weights w(t) and a loss function L(t), where t

indexes the current training iteration (indexed at 1), Adam's

parameter update is given by:

mw
(t+1) = α1 mw

(t) + (1-α1) g(L(t))

υw
(t+1) = α2 υw

(t) + (1-α2) [g(L(t))]2

ṁw = mw
(t+1)/(1- α1

t)

ῡw = υw
(t+1)/ (1- α2

t)

w(t+1) = w(t) – η(ṁw/(√ῡw+ε)

Where, ε is a small number used to prevent division by

0, and α1 and α2 are the decay rates for first moment (mw
(t))

and second moment (υw
(t)) of loss function’s gradient

(g(L(t))), respectively. ṁw and ῡw are bias corrected 1st and

2nd moments respectively as it has been observed that when

moments are initialized as vectors of 0s, future iterative

values tend to bias towards 0.

The default parameters (momentum factor η=0.001,

α1=0.9, α2=0.999, and ε=10-8) are proposed by authors and

are considered to work on a broad spectrum of problems.

This modified version of gradient-descent algorithm was

published at International Conference on Learning

Representations (ICLR) [Diederik & Jimmy, 2015] [15].

Although the purpose of this algorithm is to ease the

process of solving large datasets and/or high-dimensional

parameter spaces machine learning problems [15]. The

main advantage of Adam is its robust and well-suitability

to a wide range of non-convex optimization problems.

More illustrious details on Adam can be found in its

original paper. Despite author’s recommendation of

Adam’s hyper parameters, a separate study to optimize the

parameters can be performed if required. However, this

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

10

study was an attempt to assess the Adam’s performance on

ANN RR modelling compared to conceptual physical

models. As a preference, default parameters were taken as

suggested by algorithm’s authors. The results are presented

in section III.

Input Variable Selection:

Processes with multiple dependent variables are highly
complex which leads to certain disadvantages like loss of
model interpretability or overfitting. To counter these
disadvantages, feature selection plays a very important role
in a modelling process. For feature selection, there are
many methods available in literature. For this study, cross-
correlation, auto-correlation, and partial auto-correlation
analyses were carried out to choose the most influential and
relatable input variables (number of input layer neurons).
Cross-correlation is calculated similar to coefficient of
correlation, R for two different variable’s (runoff, Q(t) and
rainfall, R(t)) time series. In time series forecasting,
autocorrelation function (ACF) and partial autocorrelation
function (PACF) quantify the dependency or correlation of
a time series observation, Q(t) with its own lagged series,
Q(t-1), Q(t-2),…..,Q(to). ACF finds the linear dependency
(Coefficient of Correlation, R or Pearson Correlation) of
Q(t) series on any of lagged Q(t-k) series while PACF
calculates the autocorrelation between two series, Q(t) and
Q(t-k), after removing Q(t)’s linear dependency on all
lagged series between t and t-k. The results for input
variables selection can be found below in Table 2 and fig.9.

TABLE 2: Cross-Correlation Analysis

 Runoff, Q(t)

Rainfall Godaveri Jardine

R(t) 0.256 0.355

R(t-1) 0.364 0.404

R(t-2) 0.447 0.424

R(t-3) 0.455 0.419

R(t-4) 0.438 0.402

R(t-5) 0.403 0.385

R(t-6) 0.358 0.377

R(t-7) 0.338 0.372

R(t-8) 0.324 0.37

R(t-9) 0.31 0.372

R(t-10) 0.3 0.37

a. Godaveri Catchment

b. Jardine Catchment

Fig.9. Auto-Correlation and Partial Auto-Correlation
Function (ACF and PACF) Analysis

As can be seen in above graphs, for both catchments, Q(t-

1) and Q(t-2) have significant PACF values as compared to
others and hence were taken as input variables. From cross-
correlation values between Q(t) and R(t-k) for k= 0 to 20, it
is difficult to interpret a clear difference in correlation
strength for any R(t-k). Following model with given input
variables was considered for this study but variants with
different input variables might also be considered (outside
the scope of this report). Although, a comparison between
M1’s best configuration with a more input neurons model
was held with results in section IV.

Model Input Variables Output Variables
M1 Q(t-1), Q(t-2), R(t), R(t-1),

R(t-2)
Q(t)

Data Scaling:

ANNs are prone to give bad performance for different

inputs with different scales. In unscaled data, input

variables with large magnitude tends to decide the outcome

of an ANN model irrespective of its nature of relationship

with the output variable. To overcome this precedented

issue, the data was scaled between 0.1 and 0.9. For

demonstration purpose, an ANN model M2 is developed,

each, for raw (unscaled) and scaled data of godaveri

catchment. Models are evaluated with error metrics AARE,

TS1 & TS25. Rectifier activation function in hidden layer

neurons was used and the models (5-9-1 ANN model was

used which is determined using mentioned above third

heuristic rule to estimate the number of hidden layer

neurons) were learned by Adam optimization algorithm.

The results for ANN model M1-AR-9 are shown below in

Table 3. ANN models with scaled data is clearly a better

choice with highly positive results when compared to

models with raw data. For any other ANN model

developed, scaled data was used.

TABLE 3. ANN Model for Scaled and Raw data:

 Training Validation

ANN
model

AARE TS1 TS25 AARE TS1 TS25

M1-AR-9
(unscaled)

26.2 6.48 76.6 16.6 9.26 83.5

M1-AR-9 1.99 74.0 99.0 1.07 82.5 99.8

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

11

(scaled)

Optimal ANN Architecture:

There are many experimentally proven rules for selecting

the number of hidden layer neurons but the generalization

of those rules to different catchments is not evident and can

be verified in literature. To verify that, for this study, a

comparative analysis for ANN model M1 with architecture

5-y-1 is conducted where x varies from 1 to 20. For finding

the optimal structure (y) of ANN model M1, k-cross

validation is used with k=3. For ANN model development

procedure, the method proposed and evaluated was Adam

ReLU (AR).

The results for ANN models M1-AR-x developed are

available in section III where x is no. of hidden layer

neurons. Parameter x is chosen by validating different

hidden layer neurons ANN models. For validation, 500

data points were taken from training data (leaving 2500

and 3000 training data respectively). The analysis was

conducted on both catchments. The hidden layer neurons

selection analysis can be observed in section III.

Overfitting and Under-fitting Issues of ANN model:

Often, ANN Models over fit to training data during

learning and hence, perform unsatisfactorily on test data.

During overfitting, despite having low training errors,

models underperform because they loses its generalization

capacity. Increment in models’ biasness results in decrease

of variance (generalization power). Overfitting often

results due to either more complexity or excessive training

of predictive models. Complexity of models developed

here was checked while selecting hidden layer neurons (x).

Prevention of overfitting was also ensured by choosing

experimentally sound no. of epochs for model training.

Epoch analysis was done by an iterative error visualization

graphical technique. In addition to above methods,

overfitting can also be subjected to number of input

variables (neurons) for a model. This is shown by a

comparison of M1 and M2. The epoch graph and model

comparison can be observed in section III.

III. CASE STUDIES

A. GODAVERI:

In Godaveri catchment, for ANN model M1-AR-x,

parameter x was found out by a simple iterative

methodology with x = 1 to 20 and the results can be

observed in fig.10. For modelling, hyper-parameters used

were epochs = 100 and batch size = 10.

From fig.10, M1-AR-x models with x = 4, 5, 9, 15 and

17 clearly performed better in comparison to others on the

basis of validation data RMSE. Correlation, R and RMSE

values for above x values are listed below in Table 4 for a

microscopic numerical analysis. Although model with 15

hidden layer neurons performed better during training

compared to others, it failed to produce better results on

validation data set. This is because as complexity of a

model increases, bias (or generalization capability) also

increases (decreases). ANN model with x = 5 was

considered best among all M1 ANN models based on

results. As x increases after 5, chances of overfitting of

training data increased with more lower training RMSE (or

higher R) while higher validation RMSE (or lower R).

Further, from fig.10, overall trend of training RMSE can be

seen as decreasing while its gap with validation RMSE

increasing. This accounts to underperformance of more

complex models (higher x).

Table 4. Training and Validation errors for M1-AR-x

ANN models on Godaveri Catchment:

 Training Validation

Hidden

Neurons,

x

R RMSE R RMSE

4 0.958 0.0371 0.924 0.0394

5 0.945 0.0434 0.934 0.0392

9 0.975 0.0285 0.930 0.0405

15 0.987 0.0207 0.928 0.0387

17 0.984 0.0232 0.925 0.0403

Fig.10. Hidden Layer Neurons Selection for M1-AR-x ANN Modelling in Godaveri Catchment

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

12

To validate overfitting by excessive training in M1-AR-5

model, fig.11 shows a graph between epochs and training

& testing RMSE after each epoch. Only training (without

validation) and testing data was considered for this

overfitting validation. Error metric RMSE was calculated

for evaluation and from below graph, it can be observed

that there are many regions, larger one between 136 and

156, where fluctuations are infinitesimal. Overall, in this

case, there is not a clear sign of overfitting during model

training for larger epoch value. But as a precaution for

overfitting and also to give ample time for model training,

epoch value, 100 was considered. An inference for this

behavior of M1-AR-5 is explained during epoch analysis of

Jardine.

Fig. 11. Graph for different epochs chosen for model M1-

AR-5 training vs RMSE (Godaveri catchment)

B. JARDINE:

Similar to Godaveri, best value of x for M1-AR-x ANN

model is found out by k cross-validation with k=3. Only

training data was used for this calculation of x. In fig.12,

bias-variance tradeoff phenomenon of predictive models

can be clearly observed as complexity of model (or x)

increases, training metrics (R and RMSE), comparatively,

perform better than validation. However, at x = 18, there is

a sudden increment in validation correlation (ValCorr)

which can be attributed to regularization feature of rectifier

linear unit (ReLU) activation function. Due to ReLU, as its

composition is, a large number of hidden layer neurons

must be inactivated and as a result, transmission of input

from only highly uncorrelated and influential neurons

transmitted must be taking place to output neuron. At lower

values of x, a constant improvement in both training and

validation metrics can be seen till 4 and then a sudden

decadence at x = 5 with further improvement to x = 6.

Moving forward from x = 6 to 8, validation performance is

not substantial and a precedent decrease can be seen. Now,

following the previous trend similar to lower values of x,

performance starts improving till x = 12. After x=12,

training metrics are showing inverse behavior to validation

metrics, a sign of overfitting. Finally, x = 4, 6, 11, 12 and

18 are taken for detailed numerical evaluation in Table.5.

Fig.12. Hidden Layer Neurons Selection for M1-AR-x ANN Modelling in Jardine Catchment

Table 5. Training and Validation performance for M1-

AR-x ANN models on Godaveri Catchment:

 Training Validation

Hidden

Neurons,

x

R RMSE R RMSE

4 0.98824 0.013193 0.986978 0.01794

6 0.988211 0.013702 0.987266 0.018262

11 0.989098 0.013275 0.987481 0.017547

12 0.98987 0.013563 0.986753 0.016682

18 0.989608 0.012806 0.987831 0.016928

For model M1-AR-x, from above table, x=11 was

considered the chosen number of hidden layer neurons.

Similar to Godaveri catchment, validation of overfitting

by excessive training in M1-AR-5 model is studied. From

fig.13, it can be observed that both training and testing

RMSE decreases by an order and then remains fluctuating

in a very small bound. In this case, there is no sign of

overfitting during training. This result of no overfitting

during model optimization, in both catchments, can be

attributed to Adam optimization algorithm’s use of

previous moments (gradients) during training. For

precautionary purposes, epoch value, 50 was considered to

let models learn for a considerate time.

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

13

Fig.13. Graph for different epochs chosen for model M1-

AR-11 training vs RMSE (Jardine catchment)

IV. RESULTS, DISCUSSION AND CONCLUSION

The results were obtained during training and testing in the

form of error statistics, mentioned earlier, for various

models developed and are presented in table.6. Starting

with conceptual models, AWBM is a better model

compared to TANK. AWBM and TANK both have almost

similar predictive power. During testing, these two

produced similar values of E and R. AWBM

comprehensibly outperforms TANK with a comparatively

very low AARE and high TS100.

For purpose of assessing more dependent input

variables’ contribution during RR modelling, another

model M2 was developed with similar configurations of

M1-AR-x models developed above. This ANN model M2-

AR-x has two additional input variables Q(t-3) and R(t-3)

with hidden layer neurons 5 (and 11) for Godaveri (and

Jardine). M2’s results are compiled in table 6 with errors

indicating a slight improvement over M1 in case of

Godaveri with better MAE, AARE (%), RMSE, NMBE

(%), and TS1 (%). Other error statistics are almost similar

to be decisive. Distinctively, Jardine showed a decrease in

performance when M2 model was used. Apart from that

fig.14 shows the scatter plots which indicate a model’s

goodness of fit performance. M2 have slope closer to 1

compared to that of M1 when testing data of both

catchments are predicted. Time Series plots of both M1 and

M2 (fig.15) are almost identical. These results can be

broadened into two points. One is that RR modelling is a

spatial based physical process and requires different

models for different locations. Other is that an

experimental exploration is required to overcome RR

modelling’s conservative approach of less complexity. The

improved metrics are a clear sign that ANN models with

more input variables (M2) can perform better compared to

other lower dimensional family models like M1 if

configured with properties which can overcome the bias-

variance tradeoff of predictive models. Adam and ReLU

are few of those functional properties which can help make

model training fast (less number of epochs required) and

balance the tradeoff for complex models. ReLU’s ability to

shutoff neurons getting input below a threshold value is

beneficial for maintaining parsimony principle. ReLU

activation function is, as evident from its author’s results, a

good parameter for high dimensional processes. It can use

sparse parameters (like rainfall) for predictive modelling

and produce better results which otherwise would have not

improved in case of traditional predictive models like

conceptual. In the knowledge of author, there were no

descriptive literature available for development of Deep

Neural Networks (DNN) for RR modelling. Using more

properties like ReLU, a dedicated study can be conducted

for a DNN model development and compared with other

ANN models which had been proven to perform better.

In table given below, it can be evidently seen that ANN

models performed better than conceptual models with a

very substantial improvement. For both training and testing

of each catchment, both ANN models M1 and M2

outperforms AWBM and TANK on basis of almost error

metric. Extremely low values of E and R shows the lesser

predictive power of conceptual models. Fig.15 shows the

time series plots of observed and predicted testing data for

different models developed here. These plots clearly shows

how much better ANN models are for RR modelling. Both

ANN models are far superior in terms of accurately

predicting the runoff. Observed and predicted runoff of

ANN models are identical while conceptual models were

unable to level up with such performance. These

unchallenging results of conceptual models are a clear sign

for an upward shift in use of ANN models over conceptual

models for water utility systems and other purposes. As far

as their non-reliability for application purposes is

concerned, it can be the result of their parameters’ non-

interpretability factor.

For future scope, a comparative study of Adam with

benchmarked LM and ReLU with different activation

functions for RR Neural Networks (NN) is encouraged.

Table 6. Error Statistics of Rainfall-Runoff models

Godaveri Catchment

Training

Models E R MAE AARE% RMSE NMBE% TS1% TS25 TS50 TS100 MF%

AWBM 0.429 0.709 - 117.41 5247.35 -2.7 0.25 7.86 15.5 90.94 -47.4

TANK 0.492 0.737 - 208.66 4936.76 -20.4 0.10 7.76 14.0 23.53 -61.1

M1-AR-5 0.897 0.952 0.0074 5.69 0.01443 3.82 5.2 99.0 99.96 100 -7.20

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

14

M2-AR-5 0.898 0.951 0.0066 4.96 0.01433 2.25 5.7 99.0 100 100 -8.46

Testing

AWBM 0.245 0.558 - 100.23 4183.12 64.9 0.288 3.31 7.14 98.13 -45.2

TANK 0.309 0.577 - 179.05 4011.11 29.3 0.216 3.82 8.80 19.32 -32.2

M1-AR-5 0.866 0.942 0.0070 5.74 0.01194 4.26 3.82 99.0 99.93 100 -51.2

M2-AR-5 0.877 0.943 0.0061 4.88 0.01142 2.82 5.42 99.1 100 100 -49.3

Jardine Catchment

Training

AWBM 0.762 0.875 - 39.1 1.34 1.27 1.61 37.7 75.10 95.03 -18.2

TANK 0.741 0.861 - 34.7 1.38 5.25 1.92 49.6 80.58 95.78 16.8

M1-AR-11 0.979 0.989 0.0065 2.44 0.015 -0.04 54.4 99.6 100 100 -7.05

M2-AR-11 0.975 0.989 0.0108 5.39 0.016 -3.24 4.13 99.6 100 100 -1.04

Testing

AWBM 0.717 0.875 - 38.9 1.26 8.82 1.36 36.0 70.27 96.54 1.99

TANK 0.754 0.875 - 37.7 1.12 13.1 1.82 40.0 70.13 95.89 -17.8

M1-AR-11 0.971 0.985 0.0058 2.51 0.014 -0.36 57 99.5 99.96 99.96 -2.82

M2-AR-11 0.965 0.986 0.0101 5.74 0.015 -3.96 2.65 99.6 100 100 -4.54

a. Godaveri

b. Jardine

Fig.14. Scatter plots of observed and predicted testing data for different models

15a. Godaveri

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

15b. Jardine

Fig.15 Time series plots of observed, predicted output and

error for different models

V. ACKNOWLEDGEMENT

I would like to thank Dr. Ashu Jain, Department of
Civil Engineering, Indian Institute of Technology Kanpur
for his enriching insights and helpful guidance which has
hugely contributed in this undergraduate project (UGP).
And, this wouldn’t have been completed without assistance
of Ms. Shubhanshi Singh and Mr. Anshul Yadav who
performed conceptual modelling in this study. Their
contribution is immense and possess huge value in the
successful completion of this UGP.

VI. REFERENCES

1. Bellie Sivakumar, Ronny Berndtsson, Jonas Olsson &
Kenji Jinno (2001). Evidence of chaos in the rainfall-
runoff process, Hydrological Sciences Journal, 46:1,
131-145.
http://dx.doi.org/10.1080/02626660109492805

2. Huynh Ngoc Phien and Pramod S.S. Pradhan, Asian
Institute of Technology, P.O. Box 2734, Bangkok
10301, Thailand. The TANK Model in Rainfall-Runoff
Modelling.

3. McCulloch, W.S. & Pitts, W. Bulletin of Mathematical
Biophysics (1943) 5: 115.
https://doi.org/10.1007/BF02478259

4. Minsky, Marvin; Papert, Seymour (1969). Perceptrons:
An Introduction to Computational Geometry. MIT
Press. ISBN 0-262-63022-2.

5. Narain, Seema; Jain, Ashu (2010). Modelling
Hydrological Process using Conceptual, Neural
System, and Hybrid Approaches. PhD thesis, IIT
Kanpur.

6. http://www.igbp.net/download/18.62dc35801456272b46
d4b/1398850074082/NL82-Deltas_infographic.pdf

7. Hargreaves, George; F.ASCE; G. Allen, Richard
(2003). History and Evaluation of Hargreaves
Evapotranspiration Equation, Journal of Irrigation and
Drainage Engineering. DOI: 10.1061/(ASCE) 0733-
9437(2003) 129:1(53)

8. Jani Fathima Jamal and Ashu Jain (2011). Comparison
of Conceptual and Neural Network Models for Daily
Rainfall- Runoff Modelling. International Conference
on Chemical, Ecology and Environmental Sciences.
http://psrcentre.org/images/extraimages/25.%20121123
7.pdf

9. https://toolkit.ewater.org.au/Tools/RRL

10. Boughton, W.J. (2004) The Australian water balance
model, Environmental Modelling & Software, vol. 19,
pp. 943-956.

11. R Hahnloser, R. Sarpeshkar, M A Mahowald, R. J.
Douglas, H.S. Seung (2000). Digital selection and
analogue amplification coexist in a cortex-inspired
silicon circuit. Nature. 405. pp. 947–951.

12. LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
(2015). "Deep learning". Nature. 521(7553): 436-444.
Bibcode:2015Natur.521..436L. doi:10.1038/nature1453
9. PMID 26017442

13. Marquardt, Donald (1963). "An Algorithm for Least-
Squares Estimation of Nonlinear Parameters". SIAM
Journal on Applied Mathematics. 11 (2): 431–
441. doi:10.1137/0111030.

14. Duchi, John; Hazan, Elad; Singer, Yoram
(2011). "Adaptive subgradient methods for online
learning and stochastic optimization" (PDF). JMLR. 12:
2121–2159.

15. Kingma, Diederik P.; Ba, Jimmy Lei. Adam: A Method
for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2015.

http://dx.doi.org/10.1080/02626660109492805
https://doi.org/10.1007/BF02478259
https://books.google.com/books?id=Ow1OAQAAIAAJ
https://books.google.com/books?id=Ow1OAQAAIAAJ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-63022-2
http://www.igbp.net/download/18.62dc35801456272b46d4b/1398850074082/NL82-Deltas_infographic.pdf
http://www.igbp.net/download/18.62dc35801456272b46d4b/1398850074082/NL82-Deltas_infographic.pdf
https://toolkit.ewater.org.au/Tools/RRL
https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/2015Natur.521..436L
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1038%2Fnature14539
https://doi.org/10.1038%2Fnature14539
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://en.wikipedia.org/wiki/Donald_Marquardt
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1137%2F0111030
http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://en.wikipedia.org/wiki/Journal_of_Machine_Learning_Research

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

VII. MODEL DEVELOPMENT TOOLS

 For preparing ANN RR models, various tools are

available for easy deployment of ANN model’s complex

procedures. However, because of restrictive functionalities

of toolbox (limitation of activation functions and

optimization algorithms) like MATLAB, et al. and author’s

personal choice, Keras API [https://keras.io/] was used for

developing ANN models in addition to MATLAB NN

ToolBox [https://in.mathworks.com/products/neural-

network.html]. Keras is a high-level neural networks API,

written in Python programming language. It was developed

with a focus on enabling fast experimentation for research

with high computationally expensive neural networks

variants like CNNs, RNNs et al. Another advantage of

Keras or other open-source programming platforms for

modelling different processes is their fast implementation

of state-of-the-art technologies which makes modelling

process less time-consuming and resourceful.

Python code for MLPNN, a sequential ANN model

(feedforward or backward) is made available in this section

for model redevelopment purpose. Further semantic details

of the code below can be explored at:

https://matplotlib.org/,

https://keras.io/,

https://pandas.pydata.org/, and

https://scikit-learn.org/

Below is the python code used to develop ANN model

for this study:

#Importing required modules

import pandas as pd

from pandas import concat

import numpy as np

import matplotlib.pyplot as plt

'''Before proceeding format the

catchment file as following:

 column1: Date,

 column2: Rainfall,

 column3: ET or blank (because of

physical models)

 column4: Runoff'''

#CHOOSE CATCHMENT FILE (godaveri.csv

or jardine.csv)

datafile = 'godaveri.csv'

#Choose training data length (3000

for godaveri.csv and 3500 for

jardine.csv)

ntrain = 3000

#Choose no. of lagged steps backward

(n_in) and forward (n_out) for data

preparation

n_in = 2

n_out = 1

#Choose no. of epochs (or

iterations) for modelling

epoch = 100

#Choose validation(0), testing(1) or

cross validation (2)

#test = 2 is for selection of hidden

layer neurons by cross-validation

test = 1

#Choose validation data length

(choose ~500 for both Godaveri and

Jardine)

nval = 498

#Choose no. of hidden layer neurons

nneuron = 5

#Read the data

data =

pd.read_csv("C:\\Users\\ShubhM\\Desk

top\\CE491A\\Project Files\\Data for

project\\%s" %(datafile),

 sep = ",",

index_col = 0, usecols =[0,1,3],

 parse_dates =

True)

data[data == -999] = pd.np.nan

array = data.values

#Checking Statistics of data

#print(data.describe())

#print(data.isnull().sum())

#Adding lagtime series of Q and R

#Method and functions for converting

data to the time-lag form

def lagvariable(data, n_in, n_out):

 """

 Frame a time series as a

supervised learning dataset.

 Arguments:

 data: Sequence of

observations as a DataFrame.

 n_in: Number of lag

observations as input (X).

https://matplotlib.org/
https://keras.io/
https://pandas.pydata.org/
https://scikit-learn.org/

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

 n_out: Number of

observations as output (y).

 Returns:

 Pandas DataFrame of lagged

series of an input variable.

 """

 colname = data.columns[0]

 cols, names = [], []

 # input sequence (t-n, ... t-1)

 for i in range(n_in, 0, -1):

 cols.append(data.shift(i))

 names += [('%s(t-%d)' %

(colname, i))]

 # forecast sequence (t, t+1, ...

t+n)

 for i in range(0, n_out):

 cols.append(data.shift(-i))

 if i == 0:

 names += [('%s(t)' %

(colname))]

 else:

 names += [('%s(t+%d)' %

(colname, i))]

 # put it all together

 agg = concat(cols, axis=1)

 agg.columns = names

 return agg

def lagdata(data, n_in, n_out):

 """

 Arguments:

 Read above method's comments

for understanding the terms

 of this method.

 n_vars: No. of variables

 Returns:

 Pandas DataFrame of lagged

series of all variables.

 """

 n_vars = 1 if type(data) is list

else data.shape[1]

 lag_data = []

 for i in range(n_vars):

 data1 =

pd.DataFrame(data[data.columns[i]])

lag_data.append(lagvariable(data1,

n_in, n_out))

 lag_data = concat(lag_data,

axis=1)

 return lag_data

#Time Series of Q and R

'''data['Q'].plot(title='Daily

Runoff Time Series',

 sharex = False, figsize =

(30,10), color = 'blue')

plt.legend(loc='best')

plt.show()

data['R(mm)'].plot(title='Daily

Rainfall Time Series',

 sharex = False, figsize =

(30,10), color = 'red')

plt.legend(loc='best')

plt.show()

data['ET(mm)'].plot(title='Daily ET

Time Series',

 sharex = False, figsize =

(30,10), color = 'green')

plt.legend(loc='best')

plt.show()'''

#Auto & Partial Correlation Graphs

from statsmodels.tsa.stattools

import acf, pacf

def autopartcorr(data, c):

 data = data.dropna(axis = 0)

 f = pd.DataFrame(acf(data[c]),

columns = [c])

 g = pd.DataFrame(pacf(data[c]),

columns = [c])

 index =

f.iloc[1:20,:].index.values

 f1 = f.iloc[1:20,:].values

 g1 = g.iloc[1:20,:].values

 plt.bar(index, f1,

align='center', color = 'blue',

alpha=0.7, label='ACF')

 plt.bar(index, g1,

align='center', color = 'green',

label='PACF')

 plt.show()

 return f, g

#Uncomment below cell to calculate

auto-corr and partial auto-corr

functions values

'''c = data.columns[1]

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

acf1, pacf1 = autopartcorr(data,

c)'''

#Dividing train and testing data

#Dropping Missing Values

data = data.dropna(axis = 0)

#method for Dividing Training &

Testing data

def split(data, ntrain):

 n = data.shape[0]

 traindata =

data.iloc[0:ntrain,:]

 ntest = n - ntrain

 testdata =

data.iloc[ntrain+1:(ntrain+ntest),:]

 return traindata, testdata

#method for feature Scaling

from sklearn.preprocessing import

MinMaxScaler

def scaledata(data, ntrain):

 scaler =

MinMaxScaler(feature_range=(0.1,

0.9))

 data =

pd.DataFrame(scaler.fit_transform(da

ta), index=data.index,

columns=data.columns)

 train, test = split(data,

ntrain)

 return train, test

#method for converting train, test

into lagged data

def finallag(data, ntrain, n_in,

n_out):

 train, test = scaledata(data,

ntrain)

 lag_train = lagdata(train, n_in,

n_out)

 lag_test = lagdata(test, n_in,

n_out)

 return lag_train, lag_test

#Method or function for input and

output split for train and test data

def XYsplit(data, ntrain, n_in,

n_out):

 train, test = finallag(data,

ntrain, n_in, n_out)

 train = train.dropna(axis = 0)

 test = test.dropna(axis = 0)

 Xtrain = train.iloc[:,:-

1].values

 Ytrain = train.iloc[:,-1].values

 Xtest = test.iloc[:,:-1].values

 Ytest = test.iloc[:,-1].values

 return Xtrain, Xtest, Ytrain,

Ytest

#choose no. of training points

ntrain = ntrain

#Compare statistical properties of

train and test data

def statcompare(data, ntrain):

 traindata, testdata =

scaledata(data, ntrain)

 print(traindata.describe())

 print(testdata.describe())

#statcompare(data, ntrain)

#Change ntrain and do necessary

changes in training and testing

split

#for better predictions

#Uncomment below to save .csv file

of final lagged data and caculate

correlation values

'''lag_data = []

lagtrain, lagtest = finallag(data,

ntrain, n_in, n_out)

lagtrain = lagtrain.dropna(axis = 0)

lagtest = lagtest.dropna(axis = 0)

lag_data.append(lagtrain)

lag_data.append(lagtest)

lagdata1 = concat(lag_data, axis =

0)

lagdata1.to_csv("C:\\Users\\ShubhM\\

Desktop\\CE491A\\Project Files\\Data

for project\\lagjardine.csv",

sep=',')

#Correlation Matrix

corrm = lagdata1.corr()'''

#Defining Correlation coeffcient for

model evaluation

from math import sqrt

def corr(y_true, y_pred):

 '''

 y_true -> true output array

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

 y_pred -> predicted output

array

 Qobar -> mean of true

outputs

 Qmbar -> mean of predicted

outputs

 '''

 Qobar = np.mean(y_true)

 Qmbar = np.mean(y_pred)

 n = len(y_true)

 covar = 0

 varQo, varQm = 0, 0

 for i in range(n):

 covar += (y_true[i]-

Qobar)*(y_pred[i]-Qmbar)

 varQo += ((y_true[i]-

Qobar)*(y_true[i]-Qobar))

 varQm += ((y_pred[i]-

Qmbar)*(y_pred[i]-Qmbar))

 corr = covar/sqrt(varQo*varQm)

 return corr

#ANN Models' Evaluation Metrics

function

def evalmet(Qo, Qm):

 '''

 mbe -> Mean Bias Error

 mae -> Mean Absolute Error

 TSX -> Threshold Statistics

below X%

 mare -> Mean Absolute

Relative Error

 mape% -> Mean Absolute %

Error

 E -> Nash-Sutcliffe

Efficiency, value=-infinity to 1

 MF% -> relative % error in

maximum value of Qo

 '''

 n = len(Qo)

 be, ae, are, arpe = 0, [], [],

[]

 Qobar = np.mean(Qo)

 for i in range(n):

 be += Qo[i]-Qm[i]

 ae.append(abs(Qo[i]-Qm[i]))

 are.append(abs((Qo[i]-

Qm[i])/Qo[i]))

 arpe.append(abs(((Qo[i]-

Qm[i])*100)/Qo[i]))

 mbe = be/float(n)

 mae = sum(ae)/float(n)

 arpe = np.array(arpe)

 TS1 = (sum(arpe<1))*100/n

 TS25 = (sum(arpe<25))*100/n

 TS50 = (sum(arpe<50))*100/n

 TS100 = (sum(arpe<100))*100/n

 mare = sum(are)/float(n)

 mape = mare*100

 e1, e2 = 0, 0

 for i in range(n):

 e1 += (Qo[i]-Qobar)*(Qo[i]-

Qobar)

 e2 += (Qo[i]-Qm[i])*(Qo[i]-

Qm[i])

 E = (e1-e2)/e1

 Qo = np.array(Qo)

 MF = 100*((Qm[np.argmax(Qo)]-

max(Qo))/max(Qo))

 results = []

 metrics = ['mbe', 'mae', 'mare',

'mape', 'TS1', 'TS25', 'TS50',

'TS100', 'E', 'MF']

 metrics1 = [mbe, mae, mare,

mape, TS1, TS25, TS50, TS100, E, MF]

 j = 0

 for i in metrics:

 i =

pd.DataFrame(metrics1[j], columns =

[i])

 results.append(i)

 j += 1

 results = concat(results,

axis=1)

 return results

#Design ANN MODEL

seed = 7

np.random.seed(seed)

define a base MLPNN model

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Activation

from sklearn.model_selection import

TimeSeriesSplit

from sklearn.metrics import

mean_squared_error

def baseline_model(n_hidneurons,

n_input):

 # create model

 model = Sequential()

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

 model.add(Dense(n_hidneurons,

input_dim = n_input))

 model.add(Activation('relu'))

 model.add(Dense(1))

 model.add(Activation('linear'))

 return model

def validatemodel(Xtrain, Ytrain,

Xtest, Ytest, nval, model,

optimizer, test, epoch):

 tbCallBack =

keras.callbacks.TensorBoard(log_dir=

'/tmp/keras_logs',

write_graph=True)

 #Compile model

 model.compile(loss='mse',

optimizer=optimizer)

 if test==2:

 #For cross validation

modelling (hidden layer neurons

selection)

 #Cross-Validation Split

 tscv =

TimeSeriesSplit(n_splits=3)

 trainrmse = []

 valrmse = []

 corrtrain = []

 corrval = []

 for train, test in

tscv.split(Xtrain, Ytrain):

 # Fit the model

 model.fit(Xtrain[train],

Ytrain[train], epochs=epoch,

 batch_size=10,

verbose=1, callbacks=[tbCallBack])

 # evaluate the model

model.evaluate(Xtrain[test],

Ytrain[test], verbose=0)

 #Preciting the output

values for train and val data

 yhattrain =

model.predict(Xtrain[train])

 yhatval =

model.predict(Xtrain[test])

 #Calculating Correlation

Coefficient for train and val data

corrtrain.append(corr(Ytrain[train],

yhattrain))

corrval.append(corr(Ytrain[test],

yhatval))

 #Calculating Root Mean

Square Error for train and val data

trainrmse.append(sqrt(mean_squared_e

rror(Ytrain[train], yhattrain)))

valrmse.append(sqrt(mean_squared_err

or(Ytrain[test], yhatval)))

 return trainrmse, valrmse,

corrtrain, corrval

 else:

 #For validation and testing

modelling (hidden layer neurons

selection)

 ntrain = Xtrain.shape[0]

 ntrain = ntrain-nval

 Xval =

Xtrain[(ntrain+1):(ntrain+nval)]

 Yval =

Ytrain[(ntrain+1):(ntrain+nval)]

 Xtrain = Xtrain[0:ntrain]

 Ytrain = Ytrain[0:ntrain]

 #Fit the model

 History = model.fit(Xtrain,

Ytrain, epochs=epoch, batch_size=10,

validation_data=(Xtest, Ytest),

verbose=1, callbacks=[tbCallBack])

 epocherr = History.history

 #Predicting the output

values for train and val data

 yhattrain =

model.predict(Xtrain)

 yhatval =

model.predict(Xval)

 #Calculating Correlation

Coefficient for train and val data

 corrtrain = corr(Ytrain,

yhattrain)

 corrval = corr(Yval,

yhatval)

 #Calculating Root Mean

Square Error for train and val data

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

 trainrmse =

(sqrt(mean_squared_error(Ytrain,

yhattrain)))

 valrmse =

(sqrt(mean_squared_error(Yval,

yhatval)))

 if test==0:

 return epocherr, Ytrain,

Yval, yhattrain, yhatval, trainrmse,

valrmse, corrtrain, corrval

 else:

 return Ytrain,

yhattrain, trainrmse, corrtrain

def modeltesting(data, ntrain, nval,

n_in, n_out, n_hidneurons, test,

epoch):

 #Split data here

 Xtrain, Xtest, Ytrain, Ytest =

XYsplit(data, ntrain, n_in, n_out)

 n_input = Xtrain.shape[1]

 #Choose model

 model =

baseline_model(n_hidneurons,

n_input)

 #Model summary and optimization

function selection

 model.summary()

 #choose optimizer

 #sgd = optimizers.SGD(lr=0.01,

decay=1e-6, momentum=0.9,

nesterov=True)

 adam =

keras.optimizers.Adam(lr=0.001,

beta_1=0.9, beta_2=0.999,

epsilon=1e-08, decay=0.0)

 if test==0:

 #call simulation method

 epocherr, Ytrain, Yval,

yhattrain, yhatval, trainrmse,

valrmse, corrtrain1, corrval =

validatemodel(Xtrain,

Ytrain,

Xtest,

Ytest,

nval,

model,

adam,

test,

epoch)

 trainrmse =

np.mean(trainrmse)

 valrmse = np.mean(valrmse)

 corrval = np.mean(corrval)

 corrtrain1 =

np.mean(corrtrain1)

 return epocherr, Ytrain,

Yval, yhattrain, yhatval,

corrtrain1, corrval, trainrmse,

valrmse

 elif test==1:

 #call simulation method

 Ytrain, yhattrain,

trainrmse, corrtrain1 =

validatemodel(Xtrain,

Ytrain,

Xtest,

Ytest,

nval,

model,

adam,

test,

epoch)

 #Evaluating the model for

testdata (Only use when a best model

#is selected)

 yhattest =

model.predict(Xtest, batch_size=1)

 corrtest = corr(Ytest,

yhattest)

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

 rmsetest =

sqrt(mean_squared_error(Ytest,

yhattest))

 weight = model.get_weights()

 return Ytrain, Ytest,

yhattrain, yhattest, corrtrain1,

corrtest, trainrmse, rmsetest,

weight

 else:

 trainrmse, valrmse,

corrtrain1, corrval =

validatemodel(Xtrain,

Ytrain,

Xtest,

Ytest,

nval,

model,

adam,

test,

epoch)

 trainrmse =

np.mean(trainrmse)

 valrmse = np.mean(valrmse)

 corrval = np.mean(corrval)

 corrtrain1 =

np.mean(corrtrain1)

 return trainrmse, valrmse,

corrtrain1, corrval

def HiddenNeuronsSelection(data,

n_in, n_out, ntrain, test, epoch):

 nval = 0

 ntrainrmse = []

 nvalrmse = []

 ncorrtrain = []

 ncorrval = []

 for nneuron in (1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20):

 cvtrainrmse, cvvalrmse,

corrtrain, corrval =

modeltesting(data,

ntrain,

nval,

n_in,

n_out,

nneuron,

test,

epoch)

ntrainrmse.append(cvtrainrmse)

 nvalrmse.append(cvvalrmse)

 ncorrtrain.append(corrtrain)

 ncorrval.append(corrval)

 return ntrainrmse, nvalrmse,

ncorrtrain, ncorrval

if test==2:

 rmsetrain, rmseval, corrtrain,

corrval =

HiddenNeuronsSelection(data,

n_in,

n_out,

ntrain,

test,

epoch)

 #Choose number of hidden layer

neurons with best results from above

metrics

 nneuron = nneuron

#Model Evaluation

elif test==0:

 epocherr, Ytrain, Yval,

yhattrain, yhatval, corrtrain,

corrval, rmsetrain, rmseval =

modeltesting(data,

ntrain,

nval,

 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING

n_in,

n_out,

nneuron,

test,

epoch)

 #Error metrics for training &

validation

 trainres = evalmet(Ytrain,

yhattrain)

 valres = evalmet(Yval, yhatval)

elif test==1:

 Ytrain, Ytest, yhattrain,

yhattest, corrtrain, corrtest,

rmsetrain, rmsetest, weights =

modeltesting(data,

ntrain,

nval,

n_in,

n_out,

nneuron,

test,

epoch)

 #Error Metrics for training &

validation

 trainres = evalmet(Ytrain,

yhattrain)

 valres = evalmet(Yval, yhatval)

 #Final Evaluation for best model

 #Evaluating the model for

testdata (Only use when a best model

is selected)

 testres = evalmet(Ytest,

yhattest)

else:

 print("Looks like you have

failed your test of

comprehensibility. Please kindly

change the value! Oh I am sorry! it

must have been tough to decipher the

previous enigmatic text, let me make

it easier for you: choose 0, 1 or 2

only for test variable")

Plot scatterplots for predicted vs

observed runoff

'''plt.scatter(Ytrain, yhattrain,

c="b", alpha=0.5,label="Predicted vs

True Output")

plt.show()

plt.scatter(Ytest, yhattest, c="b",

alpha=0.5,label="Predicted vs True

Output")

plt.show()'''

#train

'''plt.plot(yhattrain,

label='Predicted Output')

plt.plot(Ytrain, label='True

Output')

plt.legend(loc='best')

plt.show()'''

#test

'''plt.plot(yhattest,

label='Predicted Output')

plt.plot(Ytest, label='True Output')

plt.legend(loc='best')

plt.show()'''

