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ABSTRACT 

Artificial Neural Networks (ANN) is a tool of predictive analysis which can learn complex non-linear processes. One such 

complex process, rainfall-runoff (RR) modelling in Hydrology has an objective to predict runoff for a catchment and help 

to build safety and utility systems for water, a scarce resource. The purpose of this study is two-fold. Foremost one is to 

provide a detailed analysis of comparison between conventional conceptual models like AWBM & TANK and relatively 

new modelling methodology like Multi-Layer Perceptron Neural Networks (MLPNN). Second objective is to evaluate the 

performance of recently published deep learning optimization algorithm.  

 
Keywords – Rainfall- Runoff (RR) Modelling, Artificial Neural Network (ANN), AWBM Model, TANK Model, Conceptual 

Runoff Models.  

 

 

I. INTRODUCTION 
Rainfall-Runoff is a hydrologic process which can be 

arguably considered as one of the most researched topic in 
the field of hydrology modelling. Different methodologies 
have been applied in an attempt to constantly improve the 
modelling of this highly complex and implicit but yet 
deterministic chaotic system [1]. Researchers and engineers 
have tried both physical & mathematical modelling with 
both having advantages and disadvantages of their own. 
Modelling of this non-linear, dynamic (time-variant) & 
continuous process continually becomes a topic of research 
as soon as new modelling methodologies in scientific 
community immersed. An objective of designing better 
hydraulic systems like culverts, dams, at al. depends on the 
estimation of runoff values for a catchment. Few of the 
most widely applied techniques to estimate runoff values 
are physical modelling and mathematical modelling. As 
described in fig.1, in physical modelling, an output is 
directly estimated from analogues or theoretical simulations 
of the real processes while mathematical modelling 
manipulates the hidden interrelation (linear or non-linear) of 
dependent and independent variables with the help of 
various mathematical concepts to predict the regression 
function. Each modelling process has been scrutinized and 
analyzed thoroughly to increase their reliability and 
interpretability for real world and real time risk-averse 
hydraulic systems.  

Rainfall-runoff modelling, a non-linear process 
estimates runoff or streamflow for a stream (leaf), river or 
catchment with the use of different modelling tools & 
techniques as can be seen in fig.1a. The relationship 
between rainfall and runoff is very important. This is due 
mainly to the fact that rainfall data are commonly used in 
flood forecasting and good forecasting methods may be 

obtained once the appropriate relationship (with relevant 
values of parameters estimated) is established. Moreover, 
since rainfall data are normally available for a longer period 
than runoff, this availability can be used for filling in 
missing values of runoff, or in extending (most frequently 
backward) runoff records. For these purposes, the above 
relationship is very useful [2]. However, the physical 
process involved in RR modelling comprises an arguable 
level of uncertainty (because of its chaotic nature i.e., large 
number of variable interdependency makes RR modelling 
more complex) due to which existing modelling techniques 
and results are often questioned and improved. This 
uncertainty can be attributed to human developments and 
the changes they bring to this hydrologic process. To 
mitigate this uncertainty as well as improve the accuracy of 
modelling results, researchers continuously work with new 
theories and modelling research. One such theory is Neural 
Networks, a concept designed to imitate the functioning of 
human brain. The cardinal concept was originally 
developed by Warren McCulloch and Walter Pitts during 
1943 [3]. They created a simple computation model for 
processing data and extracting the unobservable (by human 
mind) insights. However, neural network research stagnated 
after machine learning research by Minsky and Papert 
(1969), [4] who discovered two major key issues with 
computational machines that processed neural networks. 
The foremost was that basic perceptrons (developed by 
McCulloch and Pitts) were incapable of processing the 
exclusive-or circuit. The second and the main reason was 
stagnation was that computers didn't have enough 
processing power to effectively handle large neural 
networks. Because of these reasons, neural network 
research slowed until computers achieved far greater 
processing power. When such power was achieved, neural 
networks research picked the pace and they also got 
recognized in different fields for computational and 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Seymour_Papert


 DETAILED ANALYSIS OF RAINFALL RUNOFF NEURAL NETWORK MODELLING  
 

3 

 

modelling purposes because of its unparalleled accuracy 
levels and quick deployment nature. A core contribution to 
this outburst can be acknowledged to non-SMEs (Subject 
Matter Experts) in both industries and academia as NNs 
were easy to model and didn’t require detailed and in-depth 
process functioning. This soft computing methodology, 
Neural networks, combines different theories from 
computer science, mathematics, and cognitive science and 
is one of the most popular modelling technique of this 
decade with applications in many fields of social science & 
natural science. The framework used for Neural network 
RR modelling is illustrated in fig.1b. The input parameters 
(rainfall) are feed to a black-box model which estimate the 
regression function between response (runoff) and input. 
The main advantage of Neural networks over other 
conventional modelling methods is its ability to easily map 
non-linear functional processes. Hence, it is only reasonable 
to apply this revolutionary technique for the hydrologic 
process.  
 

 
 

 
 

 
Fig.1. Rainfall-Runoff Process and Models 

 

Currently, variants of neural networks have been and are 
being developed improving on various limitations of earlier 
ones like Multi-Layer Perceptrons Neural Networks 
(MLPNN). Different variants of neural networks suitable 
for modelling temporal data like rainfall-runoff are 
Recurrent Neural Networks (RNNs), Long Short Term 
Memory (LSTMs), et al. These methods are relatively new 
in rainfall-runoff modelling and are currently a part of 
ongoing research. This study, however, concerns with 
MLPNN with an overall objective of determining best 
possible models for three different catchments. Different 
parameters and functionalities (architecture) of MLPNN are 
exploited here to achieve the overall objective of this study. 
The results also present a comparative analytical study of 
neural networks for different spatial locations. The earliest 
study for developing a neural network model is dated back 
to early 1990s. The application of ANNs in RR modelling 
started with preliminary study by Halff et al. (1993) who 
used a three layer feed-forward ANN for the prediction of 
hydrographs. Since then, Karunanithi et al. (1994), Hsu et 
al. (1995), Smith & Eli (1995), Minns & Hall (1996), 
Sajikumar et al. (1999), Ehrman et al. (2000), Birikundavyi 
et al. (2002), Jain & Indurthy (2003), Jain & Kumar (2007), 
Narain & Jain (2010) among many others developed ANN 
RR models using collected data from real catchments [5]. 
All these studies clearly demonstrate that ANN RR models 
are powerful tools to forecast runoff in large catchments 
which is quite difficult for conceptual models because of 
chaotic nature of rainfall runoff process.  
  

In addition, this study also serves as a comparison 
between conventional physical models and latest 
mathematical models like MLPNN. Physical or conceptual 
models replicate the real process mathematically. An 
illustration of a physical (conceptual or direct) model can be 
seen in fig. 1.c. These models are based on conceptual 
theories of rainfall-runoff cyclic process where different 
new factors like evaporation, surface flow, interflow, 
baseflow, infiltration are also considered for evaluating 
final runoff in sub-catchments of a catchments and finally 
combining them for catchment runoff. For this study, 
physical models TANK and AWBM (to be described later) 
are used for modelling rainfall runoff process and its results 
are compared with ANN models developed for same 
catchments. Fig.2 shows different modelling methods in 
both category from which models (with bold text) are 
chosen for this study. However, there are other methods 
available outside author’s limited knowledge and should be 
explored as per requirement.  
 

 
Fig.2. Practical Models for hydrologic Modelling 
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II. MODEL DEVELOPMENT 

A. STUDY AREA AND DATA: 

Data from catchment of Godaveri, and Jardine rivers 

were employed for this study. A brief overview of three 

catchments and data used is provided here. Godaveri River 

is India’s second largest with an average discharge of 3,505 

cubic meter per sec and its river delta supports 729 

persons/km2 twice the density of India [6]. The daily 

streamflow (m3/sec) data chosen for this study is taken 

from parts of Godaveri’s main tributaries Purna, Pravara, 

Manjira & Manair. Daily rainfall (mm), maximum (oC), 

and minimum temperature (oC) data from 4 gauge stations 

at Medak, Nizambad, Hanmakonda & Ramagundam is 

collected. The daily total catchment rainfall in mm is 

aggregated using simple mean. Sequences of rainfall and 

runoff comprises of total 4503 data points which 

encompasses 1st January 1986 to 30th April 1998 time 

period. After calibrating missing rainfall values using 

spatial relationship between different stations, rainfall 

series was missing two months of time steps which were 

handled during training and testing division. Daily 

maximum and minimum temperature of 4 stations were 

used to evaluate daily potential evapotranspiration (mm) 

which was an input parameter for physical models. The 

method used was Hargreaves ETo equation [7]. 

 

The daily streamflow (or runoff) (m3/s) data at Telegraph 

line (gauging station number 927001), the average of daily 

rainfall (mm) data from five rain gauges located at 

Bamaga, Cape York Post Office, Eliot Falls, Jardine 

Monument, and Peak point stations distributed all through 

the catchment, daily evapotranspiration (mm) data from 

Jardine River near Far North Queensland, Australia for a 

16-year period (1/1/1974–27/11/1989), 5810 days, was 

considered for this study. The catchment occupies an area 

of 2,500 square km. [8]. Runoff time series was missing 78 

continuous values. The data was collected from Rainfall 

Runoff Library (RRL) [9] default datasets. The Rainfall 

Runoff Library (RRL) is designed to simulate catchment 

runoff using daily rainfall and evapotranspiration data. 

RRL is used to implement conceptual physical models for 

RR modelling. 

 

The statistics of study data is provided in Table 1 and 

graphical representation of rainfall and runoff series for 

catchments can be observed in fig.3. The study data is 

divided into training and testing data (as mentioned above) 

with lengths such as statistical characteristics of training 

data were shadowing or atleast similar to that of testing 

data to avoid erroneous result as it is intuitively evident 

that a statistically different or overpowered test data will 

result in over-fitting (or generalization) issues. Data pre-

processing and preparation of lagged series brought the 

final data count of Godaveri and Jardine data sets to 4442 

and 5731 respectively. 

 

 
a. Godaveri 

 

 
b. Jardine 

Fig. 3. Rainfall and Runoff Series of Catchments 

 

 

Table 1: Statistical Analysis of Catchment Data 

Variables 

Rainfall (mm) 
Runoff (cubic m per 

sec) 

Training Testing Training Testing 

Godaveri Data 

Count 3000 1442 3000 1442 

Min. 0.0 0.0 0.362 0.272 

Max. 139.8 95.1 3270.6 1195.1 

Mean 2.87 2.08 61.93 55.34 

SD 8.97 7.17 169.96 133.17 

 Jardine Data 

Count 3500 2231 3500 2231 

Min. 0.0 0.0 0.45 0.18 

Max. 162.6 135.8 21.41 12.09 

Mean 4.63 4.32 2.59 2.11 

SD 12.3 11.76 2.64 2.16 

 

B. MODEL PERFORMANCE: 

The performance of the models developed in this study 

was evaluated using different standard statistical measures. 

The employed error statistics and their detailed description 

is given below: 

 

1. Mean Absolute Error, MAE: 

MAE has a clear interpretation as the average absolute 

difference between two variables predicted runoff (Qp) and 

observed runoff (Qo). It is calculated as simple mean of 

total absolute difference over time steps N. 

 

MAE = (1/N)∑ |Qo(t)-Qp(t)| 

Where, Qo(t) is observed output at time t, 

https://en.wikipedia.org/wiki/Drainage_basin
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Qp(t) is predicted output at time t, 

N is total number of time steps for which MAE is 

calculated. 

 

As obvious, lower values of MAE depict a better model. 

 

2. Average Absolute Relative Error, %AARE:  

AARE metric is useful in measuring the relative error of 

a variable’s single observation. AARE prevents large 

observations to misrepresent the performance of a model. It 

is calculated by taking mean of relative error for a data 

point. 

 

AARE = (1/N)∑ |Qo(t)-Qp(t)|*100/Qo(t) 

Where, terms are similar as mentioned above. 

 

Similarly to MAE, lower values represent better model 

compare to large values.  

 

3. Root Mean Square Error, RMSE:  

It is a standard measure of error in many function 

approximation problems like RR modelling. However, 

RMSE is prone to give bias results towards high magnitude 

differences between observed and predicted variable due to 

difference’s square in the numerator as can be seen below. 

  

RMSE = {(1/N)∑ [Qo(t)-Qp(t)]2}1/2 

 

AARE is a better indicator than RMSE as RMSE is 

biased towards large values of a variable to be evaluated. 

 

4. Nash-Sutcliffe Efficiency, E: 

Nash-Sutcliffe Coefficient of Efficiency compares 

predicted and observed values and evaluates the efficiency 

of network to explain the variance of data. Its value varies 

from -∞ to 1 with 1 being the best and value closer to -∞ as 

worst and value just less than 0 means that mean of a 

variable (naïve model) is a better predictor than the model. 

It is calculated as, 

E = (E1-E2)/E1 

E1 = ∑ [Qo(t)- (1/N)∑Qo(t)]2 

E2 = ∑ [Qo(t)-Qp(t)]2 

 

As compared to above error metrics, higher values of E 

are preferable for better model performance.  

 

5. Pearson Coefficient of Correlation, R: 

Correlation coefficient, R, measures the strength of 

linear correlation between observed and predicted output. 

R is calculated as covariance (Cov) between observed and 

predicted outputs divided by standard deviations (SD) of 

both predicted and observed outputs. Its values ranges from 

-1 to +1 with value close to 1 as best and close to 0 as 

worst model performance. -1 represent a perfect negative 

relationship between two variables but in RR modelling, 

values always lie between 0 and 1. Mathematically, R is 

calculated as: 

  

Cov = ∑ {[Qo(t)- (1/N)∑Qo(t)]*[Qp(t)- (1/N)∑Qp(t)]} 

SDo = {∑ [Qo(t)- (1/N)∑Qo(t)]2}1/2 

SDp = {∑ [Qp(t)- (1/N)∑Qp(t)]2}1/2 

 

R = Cov / (SDo* SDp) 

 Where, SDo is standard deviation for observed output, 

 SDp is standard deviation for predicted output. 

 

6. Normalized Mean Bias Error, NMBE %: 

NMBE indicates the overall bias of the model i.e., 

whether the model is overestimating or underestimating the 

output variable. It is measured by calculating mean error of 

output and dividing it by mean of observed output. The 

mathematical expression for MBE is: 

 

NMBE = [(1/N)∑ (Qo(t)-Qp(t)]*100/[(1/N)∑Qo(t)] 

 

Positive value of NMBE indicates overall overestimation 

while negative value mean overall underestimation by the 

model in question.  

 

7. Threshold Statistics, TSx: 

All the above mentioned error statistics give us an idea 

of overall performance of a given model. But, usually, for a 

better interpretation of a model at different level of 

Absolute relative error (ARE) is needed. Threshold 

Statistic (TS) evaluates the percentage of output values 

forecasted below a certain level of ARE (say, x %). Here, 

ARE is calculated as  

 

ARE (%) = |Qo(t)-Qp(t)|*100/Qo(t) 

Hence,  

TSx = (nx/N)*100 

Where, nx is number of data points forecasted below x% 

ARE, 

ARE dependent terms and remaining ones can be 

referred in above error measures 

 

Intuitively, large % of TSx at small x represent a good 

model performance. 

 

8. Relative Error in Maximum Flow, %MF: 

The relative error in maximum value of output variable 

provides information about the over or under-estimation in 

predicting the maximum value of output variable. It is 

computed by following expression. 

 

%MF =  Qo(max)-Qp(max)*100/Qo(max) 

Where, Qo(max) is maximum value of output variable, 

Qp(max) is the predicted value of maximum value of 

output variable. 
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Minimum value closer to 0 in any case (positive or 

negative) means a very good model performance. 

 

C. CONCEPTUAL MODEL DEVELOPMENT: 

A conceptual model is representation of a system 

(physical or man-made), made of composition of various 

concepts (theories about the system) which are used to 

simulate the system the model represents (Conceptual 

Model, Wikipedia). Rainfall-Runoff hydrologic process, a 

system of various observationally developed concepts, had 

been simulated by different conceptual models in literature. 

In a conceptual model developed here, input parameters 

(rainfall & potential evapotranspiration (PET)) considered 

to be interrelated to output variable are converted to output 

(runoff) with the help of concepts engaging these variables 

with each other. Rainfall dependency can be seen from 

fig.3. Fig.4 shows how evapotranspiration (ET) has a 

seasonal as well as positive relationship with runoff (Q). 

During each year, just before runoff peaks (for both 

catchments), evaporation peaks can be observed which can 

infer to a lagged relationship of Q(t) with ET(t-k) where t-k 

is k days before tth day. Fig. 4 also have a small 

timeframe’s (1/6/1989 to 31/10/1989) graph, where the 

inference can be held valid. 

 

 
a. Godaveri 

 

 
b. Jardine 

 

 
c. Subset of Jardine 

Fig.4. Evapotranspiration Series of Catchments 

 

Among few conceptual models, AWBM and TANK are 

used in this study for benchmarking the performance to be 

compared by ANN models. These concept of these 

conceptual models is briefly described here. 

 

AWBM: 

The Australian Water Balance Model (AWBM) is a 

catchment water balance model that relates daily rainfall 

and evapotranspiration to runoff, and calculates losses from 

rainfall for flood hydrograph modelling. It was originally 

developed by W.J. Boughton [10]. The input variables for 

AWBM are daily rainfall and potential evapotranspiration 

(PET). Compared to rainfall, evapotranspiration has little 

influence on the water balance at a daily time scale and 

thus areal potential evapotranspiration (calculated using 

Hargreaves ETo equation) is used (Boughton & Chiew 

2003). Structure of AWBM rainfall-runoff model is 

illustrated in fig.5. The AWBM model uses three surface 

stores to simulate partial areas of runoff, each representing 

user defined land use or soil classifications as proportions 

of the area of the catchment. The water balance of each 

surface store is calculated independently of the others. At 

each time step, in the model, rainfall is added to each of the 

three surface moisture stores and evapotranspiration is 

subtracted from each store. 

 

Storen = Storen +rain-evaporation (n=1, 2, 3) 

 

If the value of moisture in the store becomes negative, 

the moisture content of the store is set to zero, as the 

Evapotranspiration demand is higher than the available 

moisture. If the value of moisture in the store exceeds the 

capacity of the store, the excess moisture is counted as 

runoff and the moisture content of the store is set to 

capacity. 

 
Fig.5. Structure of AWBM rainfall-runoff model 

[https://wiki.ewater.org.au/display/SD41/] 

 

When runoff occurs from any store, part of the runoff 

becomes recharge of the Baseflow store. Its value being 

BFI*runoff where BFI is called Base Flow Index. This is 

defined to be the ratio of Base Flow to Total Flow in the 

stream flow. The remainder (i.e. (1-BFI)*runoff) is surface 

runoff. 

 

https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Simulation
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The baseflow store is depleted at the rate of (1-K)*BS 

where BS is the current moisture in the base flow store and 

K is the base flow recession constant of the time step being 

used. The surface runoff can be routed through a store if 

required to simulate the delay of surface runoff reaching 

the outlet of a medium to large catchment. The surface 

store acts in the same manner as the base flow store and is 

depleted at the rate of (1-KS)*SS, where SS is the current 

moisture in the surface runoff store and KS is the surface 

runoff recession constant of the time step being used. The 

total runoff is calculated as the sum of routed surface 

runoff and the base flow. The output may be saved in 

ML/day, m3/s or mm/day. 

 

TANK Model: 

The TANK model (Sugawara, 1961) is also applied to 

analyze daily discharge from daily precipitation and daily 

evaporation inputs. It is a simple model consisting of four 

tanks placed vertically in a series (Fig.6). 

 

In TANK model, precipitation is poured into topmost 

tank and evaporation is subtracted. This process is carried 

out subsequently for tanks 2 and 3 moving downwards. As 

each tank is emptied the evaporation shortfall is taken from 

the next tank down until all tanks are empty. The outputs 

from the side outlets (q11, q12, q2 & q3) are taken as runoff. 

Runoff outputs from the top 3 tanks are calculated using a 

formulation which can be studied in [5]. If the water level 

is below the outlet no discharge occurs. Runoff from the 

different tanks are as follows: 

1. Top tank: Surface runoff 

2. Second tank: Intermediate runoff 

3. Third tank: Sub-surface runoff 

4. Fourth tank: Base-flow 

 
Fig.6. Structure of TANK rainfall-runoff model 

 
The model seems to be simple but its output depends 

upon various parameters like the content of each store. The 

volume of each storage tank considerably effects the 

runoff. The tank model is a non-linear model. Here, instead 

of daily evaporation as input, daily evapotranspiration was 

used. 

 

Both AWBM and TANK are easy to apply with the use 

of a tookit named Rainfall Runoff Library (RRL) (CRC, 

Corporate Research Centre for Catchment Hydrology). The 

toolkit can be downloaded from [9].  

 

 For both AWBM and TANK, Calibration Optimiser and 

Objective Function used were Genetic Algorithm and 

Nash-Sutcliffe criterion (Coefficient of efficiency, E). For 

conceptual models, Godaveri data set consisting a total of 

3467 was used. The calibration was based on: Runoff 

difference in %. The Jardine data (5810 data points) for 

conceptual models was divided as 3486 for calibration and 

2324 for testing (or verification). Similarly, Godaveri data 

(3467 data points) was divided with training and 

verification sets of 2139 and 1328 respectively. 

 

Daily RR modelling results from AWBM and TANK for 

two catchments Godaveri and Jardine were found out using 

error statistics as described in section II. The results of 

AWBM and TANK are analyzed and compared with other 

models (ANN model) in section III. 

 

D. NEURAL NETOWRK MODEL DEVELOPMENT: 

1. ANN MODEL: 
An artificial neural network (ANN) is a modelling 

technique developed to mimic a "brainlike" system of 
interconnected processing units (called neurons) proposed 
by McCullock and Pitts in 1943 that learn patterns from 
past data and predicts for new events. They have vast 
applications for different purposes in different fields, but 
are hugely appraised & popular for forecasting, and 
classification problems. In fig.7, an illustration of a simple 
three layer feedforward ANN is given. As can be seen, an 
input layer with multiple neurons feeds information (input 
variables data) to middle layer and middle layer processes 
the information to further move it to an output layer which 
finally produces the output. Now, input layer does not 
directly feed raw input to the middle layer neurons. Each 
input layer neuron is connected to every middle layer 
neuron and these connections provide different weights 
(w11, et al.) to each input variables before entering into any 
middle layer neurons. The weights are initialized with 
random numbers and learned over epochs during training. 
Most of the research on ANNs justifies that the 
initialization of weights should be done in such a way that 
the summation of all weights should be exactly 1. This 
heuristic make ANN unbiased during training. Middle & 
output layers, similar to input layer, can also have one or 
more number of neurons depending upon the process. For 
RR modelling, output variable is runoff. Similar to input 
layer, each middle layer neuron is also characterized by a 
weight (wh1O, wh2O, et al.) mapped to output layer neuron. 
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These weights are also initialized similar to input layer 
neurons and are finally learned as training epochs end. 
Another parameter bias*weight (weights are bi1, bi2,….,bhO 

which are also learned during training) is added into 
weighted inputs’ summation and feed to their respective 
hidden and output layer neurons before activation function 
is triggered. Bias neuron of both input and middle layers are 
taken as 1 which is later multiplied by its learned 
connection weight to next layer neurons. Unlike input layer 
neurons, middle layer neurons consist of activation 
functions (to be discussed later) which process the 
summation of all weighted inputs from input neurons and 
bound them. Usually the activation function bound the 
value (coming) between 0 and 1 to make the processing of 
ANN fast and efficient. The outgoing activated values from 
middle layer neurons are again weighted and summed in 
output layer neuron which may or may not apply activation 
function to finally produce the output.  

A very popular ANN framework, Multi-Layer 
Perceptron Neural Network (MLPNN) with one or more 
layers between input and output layer is very widely used 
for supervised learning of non-linear processes. For RR 
modelling, it has been found out that one hidden layer 
ANNs are sufficient for good results as well as quick 
deployment & interpretability. It can be easily seen that 
more hidden layers would result in loss of model 
interpretability and more processing time. To understand 
the drawbacks of more hidden layers or complexity, one 
can refer to theory of trade-off between variance and bias of 
a statistical or mathematical model.  

 

Fig.7. Structure of a feedforward ANN model 

For this study, ANN models with one hidden layer of 
multiple neurons and an output layer of one neuron were 
developed and compared for performance evaluation. 
Activation function, ReLU (Rectified Linear Unit, to be 
discussed later) was equipped in middle layer neurons with 
a linear activation function in output layer neuron. Linear 
activation function is a linear regression line (y = x) which 
gives output same as input. From this, we can infer that 

output (rainfall) is a linear combination of inputs from 
hidden layer neurons with weights as parameters.    

 
To decide on number of neurons in hidden layers, 

various studies on different datasets have been analyzed to 
observe a pattern and a generalized rule of thumb is now 
used to limit the number of possibilities to save time and 
resources. There are many rule-of-thumb methods for 
determining a good number of neurons to be used in hidden 
layers, such as the following: 

 The number of hidden neurons should be between the 
size of the input layer and the size of the output layer. 

 The number of hidden neurons should be 2/3 the size of 
the input layer, if not sufficient then plus the size of the 
output layer. 

 The number of hidden neurons should be less than 
twice the size of the input layer. 

 

 

Activation Function: 

For deploying activation function at ANN model 

neurons, there are various functions available. The most 

widely and popularly used in hydrological modelling 

(Dawson & Wilby, 2001), Sigmoid function is a non-linear 

continuous, bounded, non-decreasing, and differentiable. It 

maintains the output value from a neuron within 0 and 1. 

The use of such logistic function induces non-linearity in 

ANN models which makes them a perfect candidate for 

modelling non-linear chaotic yet deterministic processes 

like RR hydrological process. Fig.8 shows the sigmoid 

function. Mathematically, sigmoid function is described as,  

 

f(x) = 1/(1+e-x) 

 
Fig.8. Activation Functions 

 

However, for this study, a relatively new (Hahnloser et 

al. 2000, [11]) activation function, Rectifier (fig.8) which is 

widely used in deep neural networks [12] was used. It is 

defined as,  

f(x) = max(0,x) 
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Rectifier is non-differentiable at 0 (differentiable at all 

other values) which is a disadvantage in learning of the 

ANN model but can be managed by manipulating input 

variables to never be 0 (data scaling was done between 0.1 

and 0.9 which is good for a rectifier function). A unit 

employing a rectifier is called Rectified Linear Unit 

(ReLU). Rectified linear units, compared to sigmoid 

function or similar activation functions, allow for faster 

and effective training of deep neural architectures on large 

and complex datasets. The advantage of rectifier function 

is that it functions as a regularizer (like ridge or lasso 

regularizers) to balance between bias and variance as 

complexity of a model increases.  

 

Representation of ANN model’s output:  
Now, the final output from a three-layer ANN model with 

ReLU activation function can be represented as: 
 

HIj = ∑ Ii*wij + 1*bI
j 

HOj = fH(HIj) = max(0, HIj) 
OIk = ∑ HOj*wjk + 1*bH

k 
Ok = fO(OIk) = OIk 

 
Where, Ii = input to and from ith input layer,  
bI

j = connection weight of input layer bias and jth hidden 
layer neuron, 
wij = connection weight of ith input layer neuron and jth 
hidden layer neuron, 
HIj = input to jth hidden layer neuron, 
fH(HIj) = ReLU activation function deployed on jth hidden 
layer neuron, 
wjk = connection weight of jth hidden layer neuron and kth 
output layer neuron, 
bH

k = connection weight of hidden layer bias and kth output 
layer neuron, 
OIk = input to kth output layer neuron,  
fO(OHk) = linear activation function at kth output layer 
neuron, and 
Ok = output from kth output layer neuron 
 

Optimization Learning Algorithm: 

 Until now, we have discussed about the architecture of 

ANN model. But, ANN models are mostly appraised for its 

ability to learn highly complex functions which many 

mathematical or conceptual models fail to map. ANN 

model maps the input variables with their respective output 

variable with the help of a learning algorithm which 

optimizes the error between predicted and observed output 

to lowest possible value. ANN models starts with random 

weights and iteratively updates the connection weights 

through a backpropagation method of iteratively 

transmitting output error with the help of gradient (total or 

batch) calculated w.r.t. to individual neuron or bias weight 

until optimal weights for every connection are found. 

Various algorithms had been used for finding optimal ANN 

models in RR modelling. One of the most widely used and 

superiorly proven optimization method (for RR modelling) 

is Levenberg-Marquardt (LM). LM algorithm [13] has 

been constantly used in RR modelling in literature and 

found out to outperform other backpropagation algorithms 

like gradient descent and resilient backpropagation.  

 

For this study, a recently published variant of gradient-

descent, Adam, an algorithm for first-order gradient-based 

optimization of stochastic objective functions, was used. 

Adam is based on adaptive estimates of lower-order 

moments. It is a family member of gradient descent 

algorithms with few changes like Adam’s weight update 

expression does not contain a learning rate as it is adapted 

as per the importance of individual parameter during 

updates [14]. Informally, this unique adaption increases the 

learning rate for more sparse parameters (dry days) and 

decreases the learning rate for less sparse ones (wet days). 

This strategy often improves convergence performance 

over standard stochastic gradient descent in settings where 

data is sparse and sparse parameters like rainfall are more 

informative as is the case in RR modelling. 

 

Given weights w(t) and a loss function L(t), where t 

indexes the current training iteration (indexed at 1), Adam's 

parameter update is given by: 

 

mw
(t+1) = α1 mw

(t) + (1-α1) g(L(t)) 

υw
(t+1) = α2 υw

(t) + (1-α2) [g(L(t))]2 

ṁw = mw
(t+1)/(1- α1

t) 

ῡw = υw
(t+1)/ (1- α2

t) 

w(t+1) = w(t) – η(ṁw/(√ῡw+ε) 

 

Where, ε is a small number used to prevent division by 

0, and α1 and α2 are the decay rates for first moment (mw
(t)) 

and second moment (υw
(t)) of loss function’s gradient 

(g(L(t))), respectively. ṁw and ῡw are bias corrected 1st and 

2nd moments respectively as it has been observed that when 

moments are initialized as vectors of 0s, future iterative 

values tend to bias towards 0.   

 

The default parameters (momentum factor η=0.001, 

α1=0.9, α2=0.999, and ε=10-8) are proposed by authors and 

are considered to work on a broad spectrum of problems. 

This modified version of gradient-descent algorithm was 

published at International Conference on Learning 

Representations (ICLR) [Diederik & Jimmy, 2015] [15]. 

Although the purpose of this algorithm is to ease the 

process of solving large datasets and/or high-dimensional 

parameter spaces machine learning problems [15]. The 

main advantage of Adam is its robust and well-suitability 

to a wide range of non-convex optimization problems. 

More illustrious details on Adam can be found in its 

original paper. Despite author’s recommendation of 

Adam’s hyper parameters, a separate study to optimize the 

parameters can be performed if required. However, this 

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function
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study was an attempt to assess the Adam’s performance on 

ANN RR modelling compared to conceptual physical 

models. As a preference, default parameters were taken as 

suggested by algorithm’s authors. The results are presented 

in section III.  
 
Input Variable Selection: 

Processes with multiple dependent variables are highly 
complex which leads to certain disadvantages like loss of 
model interpretability or overfitting. To counter these 
disadvantages, feature selection plays a very important role 
in a modelling process. For feature selection, there are 
many methods available in literature. For this study, cross-
correlation, auto-correlation, and partial auto-correlation 
analyses were carried out to choose the most influential and 
relatable input variables (number of input layer neurons). 
Cross-correlation is calculated similar to coefficient of 
correlation, R for two different variable’s (runoff, Q(t) and 
rainfall, R(t)) time series. In time series forecasting, 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) quantify the dependency or correlation of 
a time series observation, Q(t) with its own lagged series, 
Q(t-1), Q(t-2),…..,Q(to). ACF finds the linear dependency 
(Coefficient of Correlation, R or Pearson Correlation) of 
Q(t) series on any of lagged Q(t-k) series while PACF 
calculates the autocorrelation between two series, Q(t) and 
Q(t-k), after removing Q(t)’s linear dependency on all 
lagged series between t and t-k. The results for input 
variables selection can be found below in Table 2 and fig.9.  

 
TABLE 2: Cross-Correlation Analysis 

 Runoff, Q(t) 

Rainfall Godaveri Jardine 

R(t) 0.256 0.355 

R(t-1) 0.364 0.404 

R(t-2) 0.447 0.424 

R(t-3) 0.455 0.419 

R(t-4) 0.438 0.402 

R(t-5) 0.403 0.385 

R(t-6) 0.358 0.377 

R(t-7) 0.338 0.372 

R(t-8) 0.324 0.37 

R(t-9) 0.31 0.372 

R(t-10) 0.3 0.37 

 

 
a. Godaveri Catchment 

 
b. Jardine Catchment 

Fig.9. Auto-Correlation and Partial Auto-Correlation 
Function (ACF and PACF) Analysis 

 
As can be seen in above graphs, for both catchments, Q(t-

1) and Q(t-2) have significant PACF values as compared to 
others and hence were taken as input variables. From cross-
correlation values between Q(t) and R(t-k) for k= 0 to 20, it 
is difficult to interpret a clear difference in correlation 
strength for any R(t-k). Following model with given input 
variables was considered for this study but variants with 
different input variables might also be considered (outside 
the scope of this report). Although, a comparison between 
M1’s best configuration with a more input neurons model 
was held with results in section IV. 

 

Model Input Variables Output Variables 
M1 Q(t-1), Q(t-2), R(t), R(t-1), 

R(t-2) 
Q(t) 

    

Data Scaling: 

ANNs are prone to give bad performance for different 

inputs with different scales. In unscaled data, input 

variables with large magnitude tends to decide the outcome 

of an ANN model irrespective of its nature of relationship 

with the output variable. To overcome this precedented 

issue, the data was scaled between 0.1 and 0.9. For 

demonstration purpose, an ANN model M2 is developed, 

each, for raw (unscaled) and scaled data of godaveri 

catchment. Models are evaluated with error metrics AARE, 

TS1 & TS25. Rectifier activation function in hidden layer 

neurons was used and the models (5-9-1 ANN model was 

used which is determined using mentioned above third 

heuristic rule to estimate the number of hidden layer 

neurons) were learned by Adam optimization algorithm. 

The results for ANN model M1-AR-9 are shown below in 

Table 3. ANN models with scaled data is clearly a better 

choice with highly positive results when compared to 

models with raw data. For any other ANN model 

developed, scaled data was used. 

 

TABLE 3. ANN Model for Scaled and Raw data: 

 Training Validation 

ANN 
model 

AARE TS1 TS25 AARE TS1 TS25 

M1-AR-9 
(unscaled) 

26.2 6.48 76.6 16.6 9.26 83.5 

M1-AR-9 1.99 74.0 99.0 1.07 82.5 99.8 
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(scaled) 

 
Optimal ANN Architecture: 

There are many experimentally proven rules for selecting 

the number of hidden layer neurons but the generalization 

of those rules to different catchments is not evident and can 

be verified in literature. To verify that, for this study, a 

comparative analysis for ANN model M1 with architecture 

5-y-1 is conducted where x varies from 1 to 20. For finding 

the optimal structure (y) of ANN model M1, k-cross 

validation is used with k=3. For ANN model development 

procedure, the method proposed and evaluated was Adam 

ReLU (AR). 

 

The results for ANN models M1-AR-x developed are 

available in section III where x is no. of hidden layer 

neurons. Parameter x is chosen by validating different 

hidden layer neurons ANN models. For validation, 500 

data points were taken from training data (leaving 2500 

and 3000 training data respectively). The analysis was 

conducted on both catchments. The hidden layer neurons 

selection analysis can be observed in section III.  

 

Overfitting and Under-fitting Issues of ANN model: 

Often, ANN Models over fit to training data during 

learning and hence, perform unsatisfactorily on test data. 

During overfitting, despite having low training errors, 

models underperform because they loses its generalization 

capacity. Increment in models’ biasness results in decrease 

of variance (generalization power). Overfitting often 

results due to either more complexity or excessive training 

of predictive models. Complexity of models developed 

here was checked while selecting hidden layer neurons (x). 

Prevention of overfitting was also ensured by choosing 

experimentally sound no. of epochs for model training. 

Epoch analysis was done by an iterative error visualization 

graphical technique. In addition to above methods, 

overfitting can also be subjected to number of input 

variables (neurons) for a model. This is shown by a 

comparison of M1 and M2. The epoch graph and model 

comparison can be observed in section III. 

III. CASE STUDIES  

A. GODAVERI: 

In Godaveri catchment, for ANN model M1-AR-x, 

parameter x was found out by a simple iterative 

methodology with x = 1 to 20 and the results can be 

observed in fig.10. For modelling, hyper-parameters used 

were epochs = 100 and batch size = 10. 

 

From fig.10, M1-AR-x models with x = 4, 5, 9, 15 and 

17 clearly performed better in comparison to others on the 

basis of validation data RMSE. Correlation, R and RMSE 

values for above x values are listed below in Table 4 for a 

microscopic numerical analysis. Although model with 15 

hidden layer neurons performed better during training 

compared to others, it failed to produce better results on 

validation data set. This is because as complexity of a 

model increases, bias (or generalization capability) also 

increases (decreases). ANN model with x = 5 was 

considered best among all M1 ANN models based on 

results. As x increases after 5, chances of overfitting of 

training data increased with more lower training RMSE (or 

higher R) while higher validation RMSE (or lower R). 

Further, from fig.10, overall trend of training RMSE can be 

seen as decreasing while its gap with validation RMSE 

increasing. This accounts to underperformance of more 

complex models (higher x).  

 

Table 4. Training and Validation errors for M1-AR-x 

ANN models on Godaveri Catchment: 

 Training Validation 

Hidden 

Neurons, 

x 

R RMSE R RMSE 

4 0.958 0.0371 0.924 0.0394 

5  0.945 0.0434 0.934 0.0392 

9 0.975 0.0285 0.930 0.0405 

15 0.987 0.0207 0.928 0.0387 

17 0.984 0.0232 0.925 0.0403 

 

 
Fig.10. Hidden Layer Neurons Selection for M1-AR-x ANN Modelling in Godaveri Catchment 
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To validate overfitting by excessive training in M1-AR-5 

model, fig.11 shows a graph between epochs and training 

& testing RMSE after each epoch. Only training (without 

validation) and testing data was considered for this 

overfitting validation.  Error metric RMSE was calculated 

for evaluation and from below graph, it can be observed 

that there are many regions, larger one between 136 and 

156, where fluctuations are infinitesimal. Overall, in this 

case, there is not a clear sign of overfitting during model 

training for larger epoch value. But as a precaution for 

overfitting and also to give ample time for model training, 

epoch value, 100 was considered. An inference for this 

behavior of M1-AR-5 is explained during epoch analysis of 

Jardine. 

 
Fig. 11. Graph for different epochs chosen for model M1-

AR-5 training vs RMSE (Godaveri catchment) 

 

B. JARDINE: 

Similar to Godaveri, best value of x for M1-AR-x ANN 

model is found out by k cross-validation with k=3. Only 

training data was used for this calculation of x. In fig.12, 

bias-variance tradeoff phenomenon of predictive models 

can be clearly observed as complexity of model (or x) 

increases, training metrics (R and RMSE), comparatively, 

perform better than validation. However, at x = 18, there is 

a sudden increment in validation correlation (ValCorr) 

which can be attributed to regularization feature of rectifier 

linear unit (ReLU) activation function. Due to ReLU, as its 

composition is, a large number of hidden layer neurons 

must be inactivated and as a result, transmission of input 

from only highly uncorrelated and influential neurons 

transmitted must be taking place to output neuron. At lower 

values of x, a constant improvement in both training and 

validation metrics can be seen till 4 and then a sudden 

decadence at x = 5 with further improvement to x = 6. 

Moving forward from x = 6 to 8, validation performance is 

not substantial and a precedent decrease can be seen. Now, 

following the previous trend similar to lower values of x, 

performance starts improving till x = 12. After x=12, 

training metrics are showing inverse behavior to validation 

metrics, a sign of overfitting. Finally, x = 4, 6, 11, 12 and 

18 are taken for detailed numerical evaluation in Table.5. 

 
Fig.12. Hidden Layer Neurons Selection for M1-AR-x ANN Modelling in Jardine Catchment 

 

 

Table 5. Training and Validation performance for M1-

AR-x ANN models on Godaveri Catchment: 

 Training Validation 

Hidden 

Neurons, 

x 

R RMSE R RMSE 

4 0.98824 0.013193 0.986978 0.01794 

6 0.988211 0.013702 0.987266 0.018262 

11 0.989098 0.013275 0.987481 0.017547 

12 0.98987 0.013563 0.986753 0.016682 

18 0.989608 0.012806 0.987831 0.016928 

 

For model M1-AR-x, from above table, x=11 was 

considered the chosen number of hidden layer neurons. 

 

Similar to Godaveri catchment, validation of overfitting 

by excessive training in M1-AR-5 model is studied. From 

fig.13, it can be observed that both training and testing 

RMSE decreases by an order and then remains fluctuating 

in a very small bound. In this case, there is no sign of 

overfitting during training. This result of no overfitting 

during model optimization, in both catchments, can be 

attributed to Adam optimization algorithm’s use of 

previous moments (gradients) during training. For 

precautionary purposes, epoch value, 50 was considered to 

let models learn for a considerate time. 
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Fig.13. Graph for different epochs chosen for model M1-

AR-11 training vs RMSE (Jardine catchment) 

IV. RESULTS, DISCUSSION AND CONCLUSION  

The results were obtained during training and testing in the 

form of error statistics, mentioned earlier, for various 

models developed and are presented in table.6. Starting 

with conceptual models, AWBM is a better model 

compared to TANK. AWBM and TANK both have almost 

similar predictive power. During testing, these two 

produced similar values of E and R. AWBM 

comprehensibly outperforms TANK with a comparatively 

very low AARE and high TS100.  

 

For purpose of assessing more dependent input 

variables’ contribution during RR modelling, another 

model M2 was developed with similar configurations of 

M1-AR-x models developed above. This ANN model M2-

AR-x has two additional input variables Q(t-3) and R(t-3) 

with hidden layer neurons 5 (and 11) for Godaveri (and 

Jardine). M2’s results are compiled in table 6 with errors 

indicating a slight improvement over M1 in case of 

Godaveri with better MAE, AARE (%), RMSE, NMBE 

(%), and TS1 (%). Other error statistics are almost similar 

to be decisive. Distinctively, Jardine showed a decrease in 

performance when M2 model was used. Apart from that 

fig.14 shows the scatter plots which indicate a model’s 

goodness of fit performance.  M2 have slope closer to 1 

compared to that of M1 when testing data of both 

catchments are predicted. Time Series plots of both M1 and 

M2 (fig.15) are almost identical. These results can be 

broadened into two points. One is that RR modelling is a 

spatial based physical process and requires different 

models for different locations. Other is that an 

experimental exploration is required to overcome RR 

modelling’s conservative approach of less complexity. The 

improved metrics are a clear sign that ANN models with 

more input variables (M2) can perform better compared to 

other lower dimensional family models like M1 if 

configured with properties which can overcome the bias-

variance tradeoff of predictive models. Adam and ReLU 

are few of those functional properties which can help make 

model training fast (less number of epochs required) and 

balance the tradeoff for complex models. ReLU’s ability to 

shutoff neurons getting input below a threshold value is 

beneficial for maintaining parsimony principle. ReLU 

activation function is, as evident from its author’s results, a 

good parameter for high dimensional processes. It can use 

sparse parameters (like rainfall) for predictive modelling 

and produce better results which otherwise would have not 

improved in case of traditional predictive models like 

conceptual. In the knowledge of author, there were no 

descriptive literature available for development of Deep 

Neural Networks (DNN) for RR modelling. Using more 

properties like ReLU, a dedicated study can be conducted 

for a DNN model development and compared with other 

ANN models which had been proven to perform better.     

 

In table given below, it can be evidently seen that ANN 

models performed better than conceptual models with a 

very substantial improvement. For both training and testing 

of each catchment, both ANN models M1 and M2 

outperforms AWBM and TANK on basis of almost error 

metric. Extremely low values of E and R shows the lesser 

predictive power of conceptual models. Fig.15 shows the 

time series plots of observed and predicted testing data for 

different models developed here. These plots clearly shows 

how much better ANN models are for RR modelling. Both 

ANN models are far superior in terms of accurately 

predicting the runoff. Observed and predicted runoff of 

ANN models are identical while conceptual models were 

unable to level up with such performance. These 

unchallenging results of conceptual models are a clear sign 

for an upward shift in use of ANN models over conceptual 

models for water utility systems and other purposes. As far 

as their non-reliability for application purposes is 

concerned, it can be the result of their parameters’ non-

interpretability factor.   

 

For future scope, a comparative study of Adam with 

benchmarked LM and ReLU with different activation 

functions for RR Neural Networks (NN) is encouraged.   

 

Table 6. Error Statistics of Rainfall-Runoff models 

Godaveri Catchment 

Training 

Models E R MAE AARE% RMSE NMBE% TS1% TS25 TS50 TS100 MF% 

AWBM 0.429 0.709 - 117.41 5247.35 -2.7 0.25 7.86 15.5 90.94 -47.4 

TANK 0.492 0.737 - 208.66 4936.76 -20.4 0.10 7.76 14.0 23.53 -61.1 

M1-AR-5 0.897 0.952 0.0074 5.69 0.01443 3.82 5.2 99.0 99.96 100 -7.20 
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M2-AR-5 0.898 0.951 0.0066 4.96 0.01433 2.25 5.7 99.0 100 100 -8.46 

Testing 

AWBM 0.245 0.558 - 100.23 4183.12 64.9 0.288 3.31 7.14 98.13 -45.2 

TANK 0.309 0.577 - 179.05 4011.11 29.3 0.216 3.82 8.80 19.32 -32.2 

M1-AR-5 0.866 0.942 0.0070 5.74 0.01194 4.26 3.82 99.0 99.93 100 -51.2 

M2-AR-5 0.877 0.943 0.0061 4.88 0.01142 2.82 5.42 99.1 100 100 -49.3 

Jardine Catchment 

Training 

AWBM 0.762 0.875 - 39.1 1.34 1.27 1.61 37.7 75.10 95.03 -18.2 

TANK 0.741 0.861 - 34.7 1.38 5.25 1.92 49.6 80.58 95.78 16.8 

M1-AR-11 0.979 0.989 0.0065 2.44 0.015 -0.04 54.4 99.6 100 100 -7.05 

M2-AR-11 0.975 0.989 0.0108 5.39 0.016 -3.24 4.13 99.6 100 100 -1.04 

Testing 

AWBM 0.717 0.875 - 38.9 1.26 8.82 1.36 36.0 70.27 96.54 1.99 

TANK 0.754 0.875 - 37.7 1.12 13.1 1.82 40.0 70.13 95.89 -17.8 

M1-AR-11 0.971 0.985 0.0058 2.51 0.014 -0.36 57 99.5 99.96 99.96 -2.82 

M2-AR-11 0.965 0.986 0.0101 5.74 0.015 -3.96 2.65 99.6 100 100 -4.54 

            

  
 

  
a. Godaveri 

  
 

  
b. Jardine

Fig.14. Scatter plots of observed and predicted testing data for different models 

 

 

 

 

15a. Godaveri 
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15b. Jardine 

Fig.15 Time series plots of observed, predicted output and 

error for different models 
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VII. MODEL DEVELOPMENT TOOLS 

 For preparing ANN RR models, various tools are 

available for easy deployment of ANN model’s complex 

procedures. However, because of restrictive functionalities 

of toolbox (limitation of activation functions and 

optimization algorithms) like MATLAB, et al. and author’s 

personal choice, Keras API [https://keras.io/] was used for 

developing ANN models in addition to MATLAB NN 

ToolBox [https://in.mathworks.com/products/neural-

network.html]. Keras is a high-level neural networks API, 

written in Python programming language. It was developed 

with a focus on enabling fast experimentation for research 

with high computationally expensive neural networks 

variants like CNNs, RNNs et al. Another advantage of 

Keras or other open-source programming platforms for 

modelling different processes is their fast implementation 

of state-of-the-art technologies which makes modelling 

process less time-consuming and resourceful. 

 

Python code for MLPNN, a sequential ANN model 

(feedforward or backward) is made available in this section 

for model redevelopment purpose. Further semantic details 

of the code below can be explored at: 

https://matplotlib.org/,  

https://keras.io/,  

https://pandas.pydata.org/, and  

https://scikit-learn.org/    

 

Below is the python code used to develop ANN model 

for this study: 

 

#Importing required modules 

import pandas as pd 

from pandas import concat 

import numpy as np 

import matplotlib.pyplot as plt 

 

'''Before proceeding format the 

catchment file as following:  

    column1: Date,  

    column2: Rainfall, 

    column3: ET or blank (because of 

physical models) 

    column4: Runoff''' 

 

#CHOOSE CATCHMENT FILE (godaveri.csv 

or jardine.csv) 

datafile = 'godaveri.csv' 

#Choose training data length (3000 

for godaveri.csv and 3500 for 

jardine.csv) 

ntrain = 3000 

#Choose no. of lagged steps backward 

(n_in) and forward (n_out) for data 

preparation 

n_in = 2 

n_out = 1 

#Choose no. of epochs (or 

iterations) for modelling 

epoch = 100 

#Choose validation(0), testing(1) or 

cross validation (2) 

#test = 2 is for selection of hidden 

layer neurons by cross-validation 

test = 1 

 

#Choose validation data length 

(choose ~500 for both Godaveri and 

Jardine) 

nval = 498 

#Choose no. of hidden layer neurons 

nneuron = 5 

 

 

#Read the data 

data = 

pd.read_csv("C:\\Users\\ShubhM\\Desk

top\\CE491A\\Project Files\\Data for 

project\\%s" %(datafile),  

                   sep = ",", 

index_col = 0, usecols =[0,1,3],  

                   parse_dates = 

True) 

data[data == -999] = pd.np.nan 

array = data.values 

 

 

#Checking Statistics of data 

#print(data.describe()) 

#print(data.isnull().sum()) 

 

 

#Adding lagtime series of Q and R  

#Method and functions for converting 

data to the time-lag form 

def lagvariable(data, n_in, n_out): 

    """ 

    Frame a time series as a 

supervised learning dataset. 

    Arguments: 

        data: Sequence of 

observations as a DataFrame. 

        n_in: Number of lag 

observations as input (X). 

https://matplotlib.org/
https://keras.io/
https://pandas.pydata.org/
https://scikit-learn.org/
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        n_out: Number of 

observations as output (y). 

         

    Returns: 

        Pandas DataFrame of lagged 

series of an input variable. 

        """ 

    colname = data.columns[0] 

    cols, names = [], [] 

    # input sequence (t-n, ... t-1) 

    for i in range(n_in, 0, -1): 

        cols.append(data.shift(i)) 

        names += [('%s(t-%d)' % 

(colname, i))] 

    # forecast sequence (t, t+1, ... 

t+n) 

    for i in range(0, n_out): 

        cols.append(data.shift(-i)) 

        if i == 0: 

            names += [('%s(t)' % 

(colname))] 

        else: 

            names += [('%s(t+%d)' % 

(colname, i))] 

    # put it all together 

    agg = concat(cols, axis=1) 

    agg.columns = names 

    return agg 

 

def lagdata(data, n_in, n_out): 

    """ 

    Arguments:  

        Read above method's comments 

for understanding the terms  

        of this method. 

        n_vars: No. of variables 

     

    Returns: 

        Pandas DataFrame of lagged 

series of all variables. 

    """ 

    n_vars = 1 if type(data) is list 

else data.shape[1] 

    lag_data = [] 

    for i in range(n_vars): 

        data1 = 

pd.DataFrame(data[data.columns[i]])            

        

lag_data.append(lagvariable(data1, 

n_in, n_out)) 

    lag_data = concat(lag_data, 

axis=1) 

    return lag_data 

 

 

#Time Series of Q and R 

'''data['Q'].plot(title='Daily 

Runoff Time Series',  

      sharex = False, figsize = 

(30,10), color = 'blue') 

plt.legend(loc='best') 

plt.show() 

data['R(mm)'].plot(title='Daily 

Rainfall Time Series',  

      sharex = False, figsize = 

(30,10), color = 'red') 

plt.legend(loc='best') 

plt.show() 

data['ET(mm)'].plot(title='Daily ET 

Time Series',  

      sharex = False, figsize = 

(30,10), color = 'green') 

plt.legend(loc='best') 

plt.show()''' 

 

 

#Auto & Partial Correlation Graphs 

from statsmodels.tsa.stattools 

import acf, pacf 

def autopartcorr(data, c): 

    data = data.dropna(axis = 0) 

    f = pd.DataFrame(acf(data[c]), 

columns = [c]) 

    g = pd.DataFrame(pacf(data[c]), 

columns = [c]) 

    index = 

f.iloc[1:20,:].index.values 

    f1 = f.iloc[1:20,:].values 

    g1 = g.iloc[1:20,:].values 

    plt.bar(index, f1, 

align='center', color = 'blue', 

alpha=0.7, label='ACF') 

    plt.bar(index, g1, 

align='center', color = 'green', 

label='PACF') 

    plt.show() 

    return f, g 

 

 

#Uncomment below cell to calculate 

auto-corr and partial auto-corr 

functions values 

'''c = data.columns[1] 
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acf1, pacf1 = autopartcorr(data, 

c)''' 

 

#Dividing train and testing data 

#Dropping Missing Values 

data = data.dropna(axis = 0) 

 

#method for Dividing Training & 

Testing data 

def split(data, ntrain): 

    n = data.shape[0] 

    traindata = 

data.iloc[0:ntrain,:]  

    ntest = n - ntrain 

    testdata = 

data.iloc[ntrain+1:(ntrain+ntest),:] 

    return traindata, testdata 

 

#method for feature Scaling  

from sklearn.preprocessing import 

MinMaxScaler 

def scaledata(data, ntrain): 

    scaler = 

MinMaxScaler(feature_range=(0.1, 

0.9)) 

    data = 

pd.DataFrame(scaler.fit_transform(da

ta), index=data.index, 

columns=data.columns) 

    train, test = split(data, 

ntrain) 

    return train, test 

 

#method for converting train, test 

into lagged data 

def finallag(data, ntrain, n_in, 

n_out): 

    train, test = scaledata(data, 

ntrain) 

    lag_train = lagdata(train, n_in, 

n_out) 

    lag_test = lagdata(test, n_in, 

n_out) 

    return lag_train, lag_test 

 

#Method or function for input and 

output split for train and test data 

def XYsplit(data, ntrain, n_in, 

n_out): 

    train, test = finallag(data, 

ntrain, n_in, n_out) 

    train = train.dropna(axis = 0) 

    test = test.dropna(axis = 0) 

    Xtrain = train.iloc[:,:-

1].values 

    Ytrain = train.iloc[:,-1].values 

    Xtest = test.iloc[:,:-1].values 

    Ytest = test.iloc[:,-1].values 

    return Xtrain, Xtest, Ytrain, 

Ytest 

 

#choose no. of training points 

ntrain = ntrain 

#Compare statistical properties of 

train and test data 

def statcompare(data, ntrain): 

    traindata, testdata = 

scaledata(data, ntrain) 

    print(traindata.describe()) 

    print(testdata.describe()) 

 

#statcompare(data, ntrain) 

#Change ntrain and do necessary 

changes in training and testing 

split 

#for better predictions  

 

#Uncomment below to save .csv file 

of final lagged data and caculate 

correlation values 

'''lag_data = [] 

lagtrain, lagtest = finallag(data, 

ntrain, n_in, n_out) 

lagtrain = lagtrain.dropna(axis = 0) 

lagtest = lagtest.dropna(axis = 0) 

lag_data.append(lagtrain) 

lag_data.append(lagtest) 

lagdata1 = concat(lag_data, axis = 

0) 

lagdata1.to_csv("C:\\Users\\ShubhM\\

Desktop\\CE491A\\Project Files\\Data 

for project\\lagjardine.csv", 

sep=',') 

#Correlation Matrix 

corrm = lagdata1.corr()''' 

 

 

#Defining Correlation coeffcient for 

model evaluation 

from math import sqrt 

def corr(y_true, y_pred): 

    ''' 

        y_true -> true output array 
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        y_pred -> predicted output 

array 

        Qobar -> mean of true 

outputs 

        Qmbar -> mean of predicted 

outputs 

    ''' 

    Qobar = np.mean(y_true) 

    Qmbar = np.mean(y_pred) 

    n = len(y_true) 

    covar = 0 

    varQo, varQm = 0, 0 

    for i in range(n): 

        covar += (y_true[i]-

Qobar)*(y_pred[i]-Qmbar) 

        varQo += ((y_true[i]-

Qobar)*(y_true[i]-Qobar)) 

        varQm += ((y_pred[i]-

Qmbar)*(y_pred[i]-Qmbar)) 

    corr = covar/sqrt(varQo*varQm) 

    return corr 

 

#ANN Models' Evaluation Metrics 

function 

def evalmet(Qo, Qm): 

    ''' 

        mbe -> Mean Bias Error 

        mae -> Mean Absolute Error 

        TSX -> Threshold Statistics 

below X% 

        mare -> Mean Absolute 

Relative Error 

        mape% -> Mean Absolute % 

Error 

        E -> Nash-Sutcliffe 

Efficiency, value=-infinity to 1 

        MF% -> relative % error in 

maximum value of Qo 

    ''' 

    n = len(Qo) 

    be, ae, are, arpe = 0, [], [], 

[] 

    Qobar = np.mean(Qo) 

    for i in range(n): 

        be += Qo[i]-Qm[i] 

        ae.append(abs(Qo[i]-Qm[i])) 

        are.append(abs((Qo[i]-

Qm[i])/Qo[i])) 

        arpe.append(abs(((Qo[i]-

Qm[i])*100)/Qo[i])) 

    mbe = be/float(n) 

    mae = sum(ae)/float(n) 

    arpe = np.array(arpe) 

    TS1 = (sum(arpe<1))*100/n 

    TS25 = (sum(arpe<25))*100/n 

    TS50 = (sum(arpe<50))*100/n 

    TS100 = (sum(arpe<100))*100/n 

    mare = sum(are)/float(n) 

    mape = mare*100 

    e1, e2 = 0, 0 

    for i in range(n): 

        e1 += (Qo[i]-Qobar)*(Qo[i]-

Qobar) 

        e2 += (Qo[i]-Qm[i])*(Qo[i]-

Qm[i]) 

    E = (e1-e2)/e1 

    Qo = np.array(Qo) 

    MF = 100*((Qm[np.argmax(Qo)]-

max(Qo))/max(Qo)) 

    results = [] 

    metrics = ['mbe', 'mae', 'mare', 

'mape', 'TS1', 'TS25', 'TS50', 

'TS100', 'E', 'MF'] 

    metrics1 = [mbe, mae, mare, 

mape, TS1, TS25, TS50, TS100, E, MF] 

    j = 0 

    for i in metrics: 

        i = 

pd.DataFrame(metrics1[j], columns = 

[i]) 

        results.append(i) 

        j += 1 

    results = concat(results, 

axis=1) 

    return results 

 

 

#Design ANN MODEL 

seed = 7 

np.random.seed(seed) 

# define a base MLPNN model 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import Activation 

from sklearn.model_selection import 

TimeSeriesSplit 

from sklearn.metrics import 

mean_squared_error 

def baseline_model(n_hidneurons, 

n_input): 

    # create model 

    model = Sequential() 
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    model.add(Dense(n_hidneurons, 

input_dim = n_input)) 

    model.add(Activation('relu')) 

    model.add(Dense(1)) 

    model.add(Activation('linear')) 

    return model 

 

 

def validatemodel(Xtrain, Ytrain, 

Xtest, Ytest, nval, model, 

optimizer, test, epoch): 

    tbCallBack = 

keras.callbacks.TensorBoard(log_dir=

'/tmp/keras_logs', 

                                         

write_graph=True) 

     

    #Compile model 

    model.compile(loss='mse', 

optimizer=optimizer) 

     

    if test==2: 

        #For cross validation 

modelling (hidden layer neurons 

selection) 

        #Cross-Validation Split 

        tscv = 

TimeSeriesSplit(n_splits=3) 

 

        trainrmse = [] 

        valrmse = [] 

        corrtrain = [] 

        corrval = [] 

        for train, test in 

tscv.split(Xtrain, Ytrain): 

            # Fit the model 

            model.fit(Xtrain[train], 

Ytrain[train], epochs=epoch,  

                      batch_size=10, 

verbose=1, callbacks=[tbCallBack]) 

            # evaluate the model 

            

model.evaluate(Xtrain[test], 

Ytrain[test], verbose=0) 

            #Preciting the output 

values for train and val data 

            yhattrain = 

model.predict(Xtrain[train]) 

            yhatval = 

model.predict(Xtrain[test]) 

            #Calculating Correlation 

Coefficient for train and val data 

            

corrtrain.append(corr(Ytrain[train], 

yhattrain)) 

            

corrval.append(corr(Ytrain[test], 

yhatval)) 

            #Calculating Root Mean 

Square Error for train and val data 

            

trainrmse.append(sqrt(mean_squared_e

rror(Ytrain[train], yhattrain))) 

            

valrmse.append(sqrt(mean_squared_err

or(Ytrain[test], yhatval))) 

        return trainrmse, valrmse, 

corrtrain, corrval 

    else: 

        #For validation and testing 

modelling (hidden layer neurons 

selection) 

        ntrain = Xtrain.shape[0] 

        ntrain = ntrain-nval 

        Xval = 

Xtrain[(ntrain+1):(ntrain+nval)] 

        Yval = 

Ytrain[(ntrain+1):(ntrain+nval)] 

        Xtrain = Xtrain[0:ntrain] 

        Ytrain = Ytrain[0:ntrain] 

        #Fit the model 

        History = model.fit(Xtrain, 

Ytrain, epochs=epoch, batch_size=10,  

                            

validation_data=(Xtest, Ytest), 

                            

verbose=1, callbacks=[tbCallBack]) 

        epocherr = History.history 

        #Predicting the output 

values for train and val data 

        yhattrain = 

model.predict(Xtrain)  

        yhatval = 

model.predict(Xval) 

        #Calculating Correlation 

Coefficient for train and val data 

        corrtrain = corr(Ytrain, 

yhattrain) 

        corrval = corr(Yval, 

yhatval) 

        #Calculating Root Mean 

Square Error for train and val data 
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        trainrmse = 

(sqrt(mean_squared_error(Ytrain, 

yhattrain))) 

        valrmse = 

(sqrt(mean_squared_error(Yval, 

yhatval))) 

     

        if test==0:     

            return epocherr, Ytrain, 

Yval, yhattrain, yhatval, trainrmse, 

valrmse, corrtrain, corrval 

        else: 

            return Ytrain, 

yhattrain, trainrmse, corrtrain 

     

 

def modeltesting(data, ntrain, nval, 

n_in, n_out, n_hidneurons, test, 

epoch): 

    #Split data here 

    Xtrain, Xtest, Ytrain, Ytest = 

XYsplit(data, ntrain, n_in, n_out) 

    n_input = Xtrain.shape[1] 

     

    #Choose model 

    model = 

baseline_model(n_hidneurons, 

n_input) 

     

    #Model summary and optimization 

function selection 

    model.summary() 

    #choose optimizer 

    #sgd = optimizers.SGD(lr=0.01, 

decay=1e-6, momentum=0.9, 

nesterov=True) 

    adam = 

keras.optimizers.Adam(lr=0.001, 

beta_1=0.9, beta_2=0.999, 

epsilon=1e-08, decay=0.0) 

    if test==0: 

        #call simulation method 

        epocherr, Ytrain, Yval, 

yhattrain, yhatval, trainrmse, 

valrmse, corrtrain1, corrval = 

validatemodel(Xtrain,  

                                                               

Ytrain, 

                                                               

Xtest, 

                                                               

Ytest, 

                                                               

nval, 

                                                               

model,  

                                                               

adam, 

                                                               

test, 

                                                               

epoch) 

        trainrmse = 

np.mean(trainrmse) 

        valrmse = np.mean(valrmse) 

        corrval = np.mean(corrval) 

        corrtrain1 = 

np.mean(corrtrain1) 

        return epocherr, Ytrain, 

Yval, yhattrain, yhatval, 

corrtrain1, corrval, trainrmse, 

valrmse  

 

    elif test==1: 

        #call simulation method 

        Ytrain, yhattrain, 

trainrmse, corrtrain1 = 

validatemodel(Xtrain,  

                                                               

Ytrain, 

                                                               

Xtest, 

                                                               

Ytest, 

                                                               

nval, 

                                                               

model,  

                                                               

adam, 

                                                               

test, 

                                                               

epoch) 

        #Evaluating the model for 

testdata (Only use when a best model  

                                        

#is selected) 

        yhattest = 

model.predict(Xtest, batch_size=1) 

        corrtest = corr(Ytest, 

yhattest) 
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        rmsetest = 

sqrt(mean_squared_error(Ytest, 

yhattest)) 

        weight = model.get_weights() 

        return Ytrain, Ytest, 

yhattrain, yhattest, corrtrain1, 

corrtest, trainrmse, rmsetest, 

weight  

    else:  

        trainrmse, valrmse, 

corrtrain1, corrval = 

validatemodel(Xtrain,  

                                                               

Ytrain, 

                                                               

Xtest, 

                                                               

Ytest, 

                                                               

nval, 

                                                               

model,  

                                                               

adam, 

                                                               

test, 

                                                               

epoch) 

        trainrmse = 

np.mean(trainrmse) 

        valrmse = np.mean(valrmse) 

        corrval = np.mean(corrval) 

        corrtrain1 = 

np.mean(corrtrain1) 

        return trainrmse, valrmse, 

corrtrain1, corrval 

 

 

def HiddenNeuronsSelection(data, 

n_in, n_out, ntrain, test, epoch): 

    nval = 0 

    ntrainrmse = [] 

    nvalrmse = [] 

    ncorrtrain = [] 

    ncorrval = [] 

    for nneuron in (1, 2, 3, 4, 5, 

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20): 

        cvtrainrmse, cvvalrmse, 

corrtrain, corrval = 

modeltesting(data, 

                                                                  

ntrain, 

                                                                  

nval, 

                                                                  

n_in, 

                                                                  

n_out, 

                                                                  

nneuron, 

                                                                  

test, 

                                                                  

epoch) 

        

ntrainrmse.append(cvtrainrmse) 

        nvalrmse.append(cvvalrmse) 

        ncorrtrain.append(corrtrain) 

        ncorrval.append(corrval) 

    return ntrainrmse, nvalrmse, 

ncorrtrain, ncorrval 

 

 

if test==2: 

    rmsetrain, rmseval, corrtrain, 

corrval = 

HiddenNeuronsSelection(data,  

                                                                    

n_in,  

                                                                    

n_out,  

                                                                    

ntrain, 

                                                                    

test, 

                                                                    

epoch) 

 

    #Choose number of hidden layer 

neurons with best results from above 

metrics 

    nneuron = nneuron 

#Model Evaluation 

elif test==0: 

    epocherr, Ytrain, Yval, 

yhattrain, yhatval, corrtrain, 

corrval, rmsetrain, rmseval = 

modeltesting(data,  

                                                           

ntrain,  

                                                           

nval, 
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n_in,  

                                                           

n_out,  

                                                           

nneuron, 

                                                           

test, 

                                                           

epoch) 

    #Error metrics for training & 

validation 

    trainres = evalmet(Ytrain, 

yhattrain) 

    valres = evalmet(Yval, yhatval) 

elif test==1: 

    Ytrain, Ytest, yhattrain, 

yhattest, corrtrain, corrtest, 

rmsetrain, rmsetest, weights = 

modeltesting(data,  

                                                        

ntrain,  

                                                           

nval, 

                                                           

n_in,  

                                                           

n_out,  

                                                           

nneuron, 

                                                           

test, 

                                                           

epoch) 

    #Error Metrics for training & 

validation 

    trainres = evalmet(Ytrain, 

yhattrain) 

    valres = evalmet(Yval, yhatval) 

    #Final Evaluation for best model 

    #Evaluating the model for 

testdata (Only use when a best model 

is selected) 

    testres = evalmet(Ytest, 

yhattest) 

else:  

    print("Looks like you have 

failed your test of 

comprehensibility. Please kindly 

change the value! Oh I am sorry! it 

must have been tough to decipher the 

previous enigmatic text, let me make 

it easier for you: choose 0, 1 or 2 

only for test variable")   

 

 

# Plot scatterplots for predicted vs 

observed runoff 

'''plt.scatter(Ytrain, yhattrain, 

c="b", alpha=0.5,label="Predicted vs 

True Output") 

plt.show() 

plt.scatter(Ytest, yhattest, c="b", 

alpha=0.5,label="Predicted vs True 

Output") 

plt.show()''' 

#train 

'''plt.plot(yhattrain, 

label='Predicted Output') 

plt.plot(Ytrain, label='True 

Output') 

plt.legend(loc='best') 

plt.show()''' 

#test 

'''plt.plot(yhattest, 

label='Predicted Output') 

plt.plot(Ytest, label='True Output') 

plt.legend(loc='best') 

plt.show()''' 


